You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
19 KiB
393 lines
19 KiB
2 years ago
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
2 years ago
|
|
||
2 years ago
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
1 year ago
|
from ultralytics.utils.metrics import OKS_SIGMA
|
||
|
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
|
||
|
from ultralytics.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
||
2 years ago
|
|
||
2 years ago
|
from .metrics import bbox_iou
|
||
|
from .tal import bbox2dist
|
||
|
|
||
|
|
||
|
class VarifocalLoss(nn.Module):
|
||
2 years ago
|
"""Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367."""
|
||
|
|
||
2 years ago
|
def __init__(self):
|
||
2 years ago
|
"""Initialize the VarifocalLoss class."""
|
||
2 years ago
|
super().__init__()
|
||
|
|
||
|
def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
|
||
2 years ago
|
"""Computes varfocal loss."""
|
||
2 years ago
|
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
||
|
with torch.cuda.amp.autocast(enabled=False):
|
||
2 years ago
|
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
|
||
1 year ago
|
weight).mean(1).sum()
|
||
2 years ago
|
return loss
|
||
|
|
||
|
|
||
1 year ago
|
# Losses
|
||
|
class FocalLoss(nn.Module):
|
||
|
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
|
||
|
|
||
|
def __init__(self, ):
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, pred, label, gamma=1.5, alpha=0.25):
|
||
|
"""Calculates and updates confusion matrix for object detection/classification tasks."""
|
||
|
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
|
||
|
# p_t = torch.exp(-loss)
|
||
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||
|
|
||
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||
|
pred_prob = pred.sigmoid() # prob from logits
|
||
|
p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
|
||
|
modulating_factor = (1.0 - p_t) ** gamma
|
||
|
loss *= modulating_factor
|
||
|
if alpha > 0:
|
||
|
alpha_factor = label * alpha + (1 - label) * (1 - alpha)
|
||
|
loss *= alpha_factor
|
||
|
return loss.mean(1).sum()
|
||
|
|
||
|
|
||
2 years ago
|
class BboxLoss(nn.Module):
|
||
|
|
||
|
def __init__(self, reg_max, use_dfl=False):
|
||
2 years ago
|
"""Initialize the BboxLoss module with regularization maximum and DFL settings."""
|
||
2 years ago
|
super().__init__()
|
||
|
self.reg_max = reg_max
|
||
|
self.use_dfl = use_dfl
|
||
|
|
||
|
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
|
||
2 years ago
|
"""IoU loss."""
|
||
2 years ago
|
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
|
||
2 years ago
|
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
|
||
|
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
|
||
|
|
||
|
# DFL loss
|
||
|
if self.use_dfl:
|
||
|
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
|
||
|
loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
|
||
|
loss_dfl = loss_dfl.sum() / target_scores_sum
|
||
|
else:
|
||
|
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
|
||
|
|
||
|
return loss_iou, loss_dfl
|
||
|
|
||
|
@staticmethod
|
||
|
def _df_loss(pred_dist, target):
|
||
2 years ago
|
"""Return sum of left and right DFL losses."""
|
||
2 years ago
|
# Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
||
2 years ago
|
tl = target.long() # target left
|
||
|
tr = tl + 1 # target right
|
||
|
wl = tr - target # weight left
|
||
|
wr = 1 - wl # weight right
|
||
2 years ago
|
return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
|
||
|
F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)
|
||
2 years ago
|
|
||
|
|
||
|
class KeypointLoss(nn.Module):
|
||
|
|
||
|
def __init__(self, sigmas) -> None:
|
||
|
super().__init__()
|
||
|
self.sigmas = sigmas
|
||
|
|
||
|
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
|
||
2 years ago
|
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
|
||
2 years ago
|
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
|
||
|
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
|
||
|
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
|
||
|
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
|
||
|
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()
|
||
2 years ago
|
|
||
|
|
||
|
# Criterion class for computing Detection training losses
|
||
|
class v8DetectionLoss:
|
||
|
|
||
|
def __init__(self, model): # model must be de-paralleled
|
||
|
|
||
|
device = next(model.parameters()).device # get model device
|
||
|
h = model.args # hyperparameters
|
||
|
|
||
|
m = model.model[-1] # Detect() module
|
||
|
self.bce = nn.BCEWithLogitsLoss(reduction='none')
|
||
|
self.hyp = h
|
||
|
self.stride = m.stride # model strides
|
||
|
self.nc = m.nc # number of classes
|
||
|
self.no = m.no
|
||
|
self.reg_max = m.reg_max
|
||
|
self.device = device
|
||
|
|
||
|
self.use_dfl = m.reg_max > 1
|
||
|
|
||
|
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
|
||
|
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
|
||
|
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
|
||
|
|
||
|
def preprocess(self, targets, batch_size, scale_tensor):
|
||
|
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
|
||
|
if targets.shape[0] == 0:
|
||
|
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
||
|
else:
|
||
|
i = targets[:, 0] # image index
|
||
|
_, counts = i.unique(return_counts=True)
|
||
|
counts = counts.to(dtype=torch.int32)
|
||
|
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
||
|
for j in range(batch_size):
|
||
|
matches = i == j
|
||
|
n = matches.sum()
|
||
|
if n:
|
||
|
out[j, :n] = targets[matches, 1:]
|
||
|
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
||
|
return out
|
||
|
|
||
|
def bbox_decode(self, anchor_points, pred_dist):
|
||
|
"""Decode predicted object bounding box coordinates from anchor points and distribution."""
|
||
|
if self.use_dfl:
|
||
|
b, a, c = pred_dist.shape # batch, anchors, channels
|
||
|
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
||
|
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
||
|
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
||
|
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
||
|
|
||
|
def __call__(self, preds, batch):
|
||
|
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
|
||
|
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
||
|
feats = preds[1] if isinstance(preds, tuple) else preds
|
||
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||
|
(self.reg_max * 4, self.nc), 1)
|
||
|
|
||
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
||
|
|
||
|
dtype = pred_scores.dtype
|
||
|
batch_size = pred_scores.shape[0]
|
||
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
||
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
||
|
|
||
|
# targets
|
||
|
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
|
||
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
||
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||
|
|
||
|
# pboxes
|
||
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
||
|
|
||
|
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
|
||
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
||
|
|
||
|
target_scores_sum = max(target_scores.sum(), 1)
|
||
|
|
||
|
# cls loss
|
||
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
||
|
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
||
|
|
||
|
# bbox loss
|
||
|
if fg_mask.sum():
|
||
|
target_bboxes /= stride_tensor
|
||
|
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
|
||
|
target_scores_sum, fg_mask)
|
||
|
|
||
|
loss[0] *= self.hyp.box # box gain
|
||
|
loss[1] *= self.hyp.cls # cls gain
|
||
|
loss[2] *= self.hyp.dfl # dfl gain
|
||
|
|
||
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
||
|
|
||
|
|
||
|
# Criterion class for computing training losses
|
||
|
class v8SegmentationLoss(v8DetectionLoss):
|
||
|
|
||
2 years ago
|
def __init__(self, model): # model must be de-paralleled
|
||
2 years ago
|
super().__init__(model)
|
||
|
self.nm = model.model[-1].nm # number of masks
|
||
2 years ago
|
self.overlap = model.args.overlap_mask
|
||
2 years ago
|
|
||
|
def __call__(self, preds, batch):
|
||
|
"""Calculate and return the loss for the YOLO model."""
|
||
|
loss = torch.zeros(4, device=self.device) # box, cls, dfl
|
||
|
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
|
||
|
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
||
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||
|
(self.reg_max * 4, self.nc), 1)
|
||
|
|
||
|
# b, grids, ..
|
||
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
||
|
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
|
||
|
|
||
|
dtype = pred_scores.dtype
|
||
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
||
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
||
|
|
||
|
# targets
|
||
|
try:
|
||
|
batch_idx = batch['batch_idx'].view(-1, 1)
|
||
|
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
|
||
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
||
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||
|
except RuntimeError as e:
|
||
|
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
|
||
|
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
|
||
|
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
|
||
|
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
|
||
|
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e
|
||
|
|
||
|
# pboxes
|
||
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
||
|
|
||
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
||
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
||
|
|
||
|
target_scores_sum = max(target_scores.sum(), 1)
|
||
|
|
||
|
# cls loss
|
||
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
||
|
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
||
|
|
||
|
if fg_mask.sum():
|
||
|
# bbox loss
|
||
|
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
|
||
|
target_scores, target_scores_sum, fg_mask)
|
||
|
# masks loss
|
||
|
masks = batch['masks'].to(self.device).float()
|
||
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
||
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
|
||
|
|
||
|
for i in range(batch_size):
|
||
|
if fg_mask[i].sum():
|
||
|
mask_idx = target_gt_idx[i][fg_mask[i]]
|
||
|
if self.overlap:
|
||
|
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
|
||
|
else:
|
||
|
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
|
||
|
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
|
||
|
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
|
||
|
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
|
||
|
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg
|
||
|
|
||
|
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
|
||
|
else:
|
||
|
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
|
||
|
|
||
|
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
|
||
|
else:
|
||
|
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
|
||
|
|
||
|
loss[0] *= self.hyp.box # box gain
|
||
|
loss[1] *= self.hyp.box / batch_size # seg gain
|
||
|
loss[2] *= self.hyp.cls # cls gain
|
||
|
loss[3] *= self.hyp.dfl # dfl gain
|
||
|
|
||
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
||
|
|
||
|
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
|
||
|
"""Mask loss for one image."""
|
||
|
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
|
||
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
|
||
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
||
|
|
||
|
|
||
|
# Criterion class for computing training losses
|
||
|
class v8PoseLoss(v8DetectionLoss):
|
||
|
|
||
|
def __init__(self, model): # model must be de-paralleled
|
||
|
super().__init__(model)
|
||
|
self.kpt_shape = model.model[-1].kpt_shape
|
||
|
self.bce_pose = nn.BCEWithLogitsLoss()
|
||
|
is_pose = self.kpt_shape == [17, 3]
|
||
|
nkpt = self.kpt_shape[0] # number of keypoints
|
||
|
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
|
||
|
self.keypoint_loss = KeypointLoss(sigmas=sigmas)
|
||
|
|
||
|
def __call__(self, preds, batch):
|
||
|
"""Calculate the total loss and detach it."""
|
||
|
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
|
||
|
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
|
||
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||
|
(self.reg_max * 4, self.nc), 1)
|
||
|
|
||
|
# b, grids, ..
|
||
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
||
|
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
|
||
|
|
||
|
dtype = pred_scores.dtype
|
||
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
||
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
||
|
|
||
|
# targets
|
||
|
batch_size = pred_scores.shape[0]
|
||
|
batch_idx = batch['batch_idx'].view(-1, 1)
|
||
|
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
|
||
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
||
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||
|
|
||
|
# pboxes
|
||
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
||
|
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
|
||
|
|
||
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
||
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
||
|
|
||
|
target_scores_sum = max(target_scores.sum(), 1)
|
||
|
|
||
|
# cls loss
|
||
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
||
|
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
||
|
|
||
|
# bbox loss
|
||
|
if fg_mask.sum():
|
||
|
target_bboxes /= stride_tensor
|
||
|
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
|
||
|
target_scores_sum, fg_mask)
|
||
|
keypoints = batch['keypoints'].to(self.device).float().clone()
|
||
|
keypoints[..., 0] *= imgsz[1]
|
||
|
keypoints[..., 1] *= imgsz[0]
|
||
|
for i in range(batch_size):
|
||
|
if fg_mask[i].sum():
|
||
|
idx = target_gt_idx[i][fg_mask[i]]
|
||
|
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51)
|
||
|
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
|
||
|
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
|
||
|
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
|
||
|
pred_kpt = pred_kpts[i][fg_mask[i]]
|
||
|
kpt_mask = gt_kpt[..., 2] != 0
|
||
|
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
|
||
|
# kpt_score loss
|
||
|
if pred_kpt.shape[-1] == 3:
|
||
|
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
|
||
|
|
||
|
loss[0] *= self.hyp.box # box gain
|
||
|
loss[1] *= self.hyp.pose / batch_size # pose gain
|
||
|
loss[2] *= self.hyp.kobj / batch_size # kobj gain
|
||
|
loss[3] *= self.hyp.cls # cls gain
|
||
|
loss[4] *= self.hyp.dfl # dfl gain
|
||
|
|
||
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
||
|
|
||
|
def kpts_decode(self, anchor_points, pred_kpts):
|
||
|
"""Decodes predicted keypoints to image coordinates."""
|
||
|
y = pred_kpts.clone()
|
||
|
y[..., :2] *= 2.0
|
||
|
y[..., 0] += anchor_points[:, [0]] - 0.5
|
||
|
y[..., 1] += anchor_points[:, [1]] - 0.5
|
||
|
return y
|
||
|
|
||
|
|
||
|
class v8ClassificationLoss:
|
||
|
|
||
|
def __call__(self, preds, batch):
|
||
|
"""Compute the classification loss between predictions and true labels."""
|
||
|
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
|
||
|
loss_items = loss.detach()
|
||
|
return loss, loss_items
|