|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr
|
|
|
|
|
|
|
|
try:
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
|
|
|
assert not TESTS_RUNNING # do not log pytest
|
|
|
|
except (ImportError, AssertionError):
|
|
|
|
SummaryWriter = None
|
|
|
|
|
|
|
|
writer = None # TensorBoard SummaryWriter instance
|
|
|
|
|
|
|
|
|
|
|
|
def _log_scalars(scalars, step=0):
|
|
|
|
if writer:
|
|
|
|
for k, v in scalars.items():
|
|
|
|
writer.add_scalar(k, v, step)
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer):
|
|
|
|
if SummaryWriter:
|
|
|
|
try:
|
|
|
|
global writer
|
|
|
|
writer = SummaryWriter(str(trainer.save_dir))
|
|
|
|
prefix = colorstr('TensorBoard: ')
|
|
|
|
LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {trainer.save_dir}', view at http://localhost:6006/")
|
|
|
|
except Exception as e:
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ TensorBoard not initialized correctly, not logging this run. {e}')
|
|
|
|
|
|
|
|
|
|
|
|
def on_batch_end(trainer):
|
|
|
|
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
|
|
|
|
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer):
|
|
|
|
_log_scalars(trainer.metrics, trainer.epoch + 1)
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = {
|
|
|
|
'on_pretrain_routine_start': on_pretrain_routine_start,
|
|
|
|
'on_fit_epoch_end': on_fit_epoch_end,
|
|
|
|
'on_batch_end': on_batch_end}
|