|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
|
|
|
# Example usage: yolo train data=VisDrone.yaml
|
|
|
|
# parent
|
|
|
|
# ├── ultralytics
|
|
|
|
# └── datasets
|
|
|
|
# └── VisDrone ← downloads here (2.3 GB)
|
|
|
|
|
|
|
|
|
|
|
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
|
|
path: ../datasets/VisDrone # dataset root dir
|
|
|
|
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
|
|
|
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
|
|
|
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
|
|
|
|
|
|
|
# Classes
|
|
|
|
names:
|
|
|
|
0: pedestrian
|
|
|
|
1: people
|
|
|
|
2: bicycle
|
|
|
|
3: car
|
|
|
|
4: van
|
|
|
|
5: truck
|
|
|
|
6: tricycle
|
|
|
|
7: awning-tricycle
|
|
|
|
8: bus
|
|
|
|
9: motor
|
|
|
|
|
|
|
|
|
|
|
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
|
|
|
download: |
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils.downloads import download
|
|
|
|
|
|
|
|
def visdrone2yolo(dir):
|
|
|
|
from PIL import Image
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
def convert_box(size, box):
|
|
|
|
# Convert VisDrone box to YOLO xywh box
|
|
|
|
dw = 1. / size[0]
|
|
|
|
dh = 1. / size[1]
|
|
|
|
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
|
|
|
|
|
|
|
|
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
|
|
|
|
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
|
|
|
|
for f in pbar:
|
|
|
|
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
|
|
|
|
lines = []
|
|
|
|
with open(f, 'r') as file: # read annotation.txt
|
|
|
|
for row in [x.split(',') for x in file.read().strip().splitlines()]:
|
|
|
|
if row[4] == '0': # VisDrone 'ignored regions' class 0
|
|
|
|
continue
|
|
|
|
cls = int(row[5]) - 1
|
|
|
|
box = convert_box(img_size, tuple(map(int, row[:4])))
|
|
|
|
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
|
|
|
with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl:
|
|
|
|
fl.writelines(lines) # write label.txt
|
|
|
|
|
|
|
|
|
|
|
|
# Download
|
|
|
|
dir = Path(yaml['path']) # dataset root dir
|
|
|
|
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
|
|
|
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
|
|
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
|
|
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
|
|
|
download(urls, dir=dir, curl=True, threads=4)
|
|
|
|
|
|
|
|
# Convert
|
|
|
|
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
|
|
|
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
|