|
|
|
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of
|
|
|
|
predefined classes.
|
|
|
|
|
|
|
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
|
|
|
|
|
|
|
The output of an image classifier is a single class label and a confidence score. Image
|
|
|
|
classification is useful when you need to know only what class an image belongs to and don't need to know where objects
|
|
|
|
of that class are located or what their exact shape is.
|
|
|
|
|
|
|
|
!!! tip "Tip"
|
|
|
|
|
|
|
|
YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet.
|
|
|
|
|
|
|
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8/cls){.md-button .md-button--primary}
|
|
|
|
|
|
|
|
## Train
|
|
|
|
|
|
|
|
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments
|
|
|
|
see the [Configuration](../cfg.md) page.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n-cls.yaml") # build a new model from scratch
|
|
|
|
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
|
|
|
|
|
|
|
# Train the model
|
|
|
|
model.train(data="mnist160", epochs=100, imgsz=64)
|
|
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
|
|
|
```
|
|
|
|
|
|
|
|
## Val
|
|
|
|
|
|
|
|
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains
|
|
|
|
it's training `data` and arguments as model attributes.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n-cls.pt") # load an official model
|
|
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
|
|
|
|
# Validate the model
|
|
|
|
metrics = model.val() # no arguments needed, dataset and settings remembered
|
|
|
|
metrics.top1 # top1 accuracy
|
|
|
|
metrics.top5 # top5 accuracy
|
|
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo classify val model=yolov8n-cls.pt # val official model
|
|
|
|
yolo classify val model=path/to/best.pt # val custom model
|
|
|
|
```
|
|
|
|
|
|
|
|
## Predict
|
|
|
|
|
|
|
|
Use a trained YOLOv8n-cls model to run predictions on images.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n-cls.pt") # load an official model
|
|
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
|
|
|
|
# Predict with the model
|
|
|
|
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo classify predict model=yolov8n-cls.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
|
|
|
yolo classify predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
|
|
|
```
|
|
|
|
|
|
|
|
Read more details of `predict` in our [Predict](https://docs.ultralytics.com/predict/) page.
|
|
|
|
|
|
|
|
## Export
|
|
|
|
|
|
|
|
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|
|
|
|
|
|
|
!!! example ""
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8n-cls.pt") # load an official model
|
|
|
|
model = YOLO("path/to/best.pt") # load a custom trained
|
|
|
|
|
|
|
|
# Export the model
|
|
|
|
model.export(format="onnx")
|
|
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
|
|
|
|
```bash
|
|
|
|
yolo export model=yolov8n-cls.pt format=onnx # export official model
|
|
|
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
|
|
|
```
|
|
|
|
|
|
|
|
Available YOLOv8-cls export formats include:
|
|
|
|
|
|
|
|
| Format | `format=` | Model | Metadata |
|
|
|
|
|--------------------------------------------------------------------|---------------|-------------------------------|----------|
|
|
|
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ |
|
|
|
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ |
|
|
|
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ |
|
|
|
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ |
|
|
|
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ |
|
|
|
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | ✅ |
|
|
|
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ |
|
|
|
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ |
|
|
|
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ |
|
|
|
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ |
|
|
|
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ |
|
|
|
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ |
|
|
|
|
|