description: Set up YOLOv5 on a Google Cloud Platform (GCP) Deep Learning VM. Train, test, detect, and export YOLOv5 models. Tutorial updated April 2023.
This tutorial will guide you through the process of setting up and running YOLOv5 on a GCP Deep Learning VM. New GCP users are eligible for a [$300 free credit offer](https://cloud.google.com/free/docs/gcp-free-tier#free-trial).
You can also explore other quickstart options for YOLOv5, such as our [Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>, [Amazon AWS](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial) and our Docker image at [Docker Hub](https://hub.docker.com/r/ultralytics/yolov5) <ahref="https://hub.docker.com/r/ultralytics/yolov5"><imgsrc="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker"alt="Docker Pulls"></a>. *Updated: 21 April 2023*.
**Last Updated**: 6 May 2022
## Step 1: Create a Deep Learning VM
1. Go to the [GCP marketplace](https://console.cloud.google.com/marketplace/details/click-to-deploy-images/deeplearning) and select a **Deep Learning VM**.
2. Choose an **n1-standard-8** instance (with 8 vCPUs and 30 GB memory).
3. Add a GPU of your choice.
4. Check 'Install NVIDIA GPU driver automatically on first startup?'
5. Select a 300 GB SSD Persistent Disk for sufficient I/O speed.
6. Click 'Deploy'.
The preinstalled [Anaconda](https://docs.anaconda.com/anaconda/packages/pkg-docs/) Python environment includes all dependencies.
Clone the YOLOv5 repository and install the [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.7.0**](https://www.python.org/) environment, including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) will be downloaded automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).