finalization of pointbase functionality, removed old scripts, removed camera scripts, they will be added into their own folder

main
Pavol Debnar 2 years ago
parent 3025a56f36
commit 3995ba6298

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

@ -1,60 +0,0 @@
import cv2
import numpy as np
import os
def variance_of_laplacian(image):
return cv2.Laplacian(image, cv2.CV_64F).var()
os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"]="rtsp_transport;tcp"
gstreamerstr = "tcpclientsrc host=192.168.0.144 port=5000 ! jpegdec ! videoconvert ! appsink"
#if not capture.isOpened() : print("CANNOT OPEN STREAM")
capture = cv2.VideoCapture("vid.mp4")
keypressNo = 1
while(True):
#capture = cv2.VideoCapture(gstreamerstr,cv2.CAP_GSTREAMER)
ret, frame = capture.read()
if not ret:
print('fail')
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
variance = variance_of_laplacian(frame)
cv2.putText(frame, "{}: {:.2f}".format("Variance:", variance), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.imshow('frame',frame)
#cv2.waitKey(0)
if cv2.waitKey(70) == ord('v'):
frames=[]
maxVarIdx = 0
maxVar = 0
for i in range(5):
ret, frame = capture.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frames.append(frame)
var = variance_of_laplacian(frame)
if var > maxVar:
maxVar = var
maxVarIdx = i
cv2.waitKey(20)
#test to see if the image with the highest variance gets picked
#cv2.putText(frame, "{}: {:.2f}".format("Variance:", var), (10, 30),
#cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
#writeString="imgtest"+str(keypressNo)+str(i)+".jpg"
#cv2.imwrite(writeString, frames[i])
writeString="img"+str(keypressNo)+".jpg"
cv2.imwrite(writeString, frames[maxVarIdx])
keypressNo=keypressNo+1
capture.release()
cv2.destroyAllWindows()

@ -1,38 +0,0 @@
import cv2
import numpy as np
import os
from imutils import paths
import argparse
def variance_of_laplacian(image):
return cv2.Laplacian(image, cv2.CV_64F).var()
def minVarInFolder(path):
minVar = 90000
minPath=""
files = os.listdir(path)
for p in files:
if ".png" in p and ".mask" not in p:
print(path+p)
img = cv2.imread(path+p)
cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
var = variance_of_laplacian(img)
if var < minVar:
minPath = path+p
minVar = var
return minPath,minVar
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", required=True,
help="path to image")
args = vars(ap.parse_args())
path = args["images"]
#img = cv2.imread(path)
#cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#var = variance_of_laplacian(img)
print(minVarInFolder(path))

File diff suppressed because it is too large Load Diff

@ -1 +0,0 @@
gst-launch-1.0 -v v4l2src device=/dev/video0 num-buffers=-1 ! video/x-raw,width=640,height=480, framerate=30/1 ! videoconvert ! jpegenc ! tcpserversink host=192.168.0.144 port=5000

@ -1,71 +0,0 @@
#include "opencv2/highgui.hpp"
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
// static void help()
// {
// cout << "\nThis program demonstrates kmeans clustering.\n"
// "It generates an image with random points, then assigns a random number of cluster\n"
// "centers and uses kmeans to move those cluster centers to their representitive location\n"
// "Call\n"
// "./kmeans\n" << endl;
// }
int main( int /*argc*/, char** /*argv*/ )
{
const int MAX_CLUSTERS = 5;
Scalar colorTab[] =
{
Scalar(0, 0, 255),
Scalar(0,255,0),
Scalar(255,100,100),
Scalar(255,0,255),
Scalar(0,255,255)
};
Mat img(500, 500, CV_8UC3);
RNG rng(12345);
for(;;)
{
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
int i, sampleCount = rng.uniform(1, 1001);
Mat points(sampleCount, 1, CV_32FC2), labels;
clusterCount = MIN(clusterCount, sampleCount);
std::vector<Point2f> centers;
/* generate random sample from multigaussian distribution */
for( k = 0; k < clusterCount; k++ )
{
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
k == clusterCount - 1 ? sampleCount :
(k+1)*sampleCount/clusterCount);
rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
}
randShuffle(points, 1, &rng);
double compactness = kmeans(points, clusterCount, labels,
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
3, KMEANS_PP_CENTERS, centers);
img = Scalar::all(0);
for( i = 0; i < sampleCount; i++ )
{
int clusterIdx = labels.at<int>(i);
Point ipt = points.at<Point2f>(i);
circle( img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA );
}
for (i = 0; i < (int)centers.size(); ++i)
{
Point2f c = centers[i];
circle( img, c, 40, colorTab[i], 1, LINE_AA );
}
cout << "Compactness: " << compactness << endl;
cout << "Labels rows" << labels.rows;
cout << "Labels cols" << labels.cols;
imshow("clusters", img);
char key = (char)waitKey();
if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
break;
}
return 0;
}

@ -1,66 +0,0 @@
// CPP program to Stitch
// input images (panorama) using OpenCV
#include <iostream>
#include <fstream>
// Include header files from OpenCV directory
// required to stitch images.
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/stitching.hpp"
using namespace std;
using namespace cv;
// Define mode for stitching as panorama
// (One out of many functions of Stitcher)
Stitcher::Mode mode = Stitcher::SCANS;
// Array for pictures
vector<Mat> imgs;
int main(int argc, char* argv[])
{
// Get all the images that need to be
// stitched as arguments from command line
for (int i = 1; i < argc; ++i)
{
// Read the ith argument or image
// and push into the image array
Mat img = imread(argv[i]);
if (img.empty())
{
// Exit if image is not present
cout << "Can't read image '" << argv[i] << "'\n";
return -1;
}
imgs.push_back(img);
}
// Define object to store the stitched image
Mat pano;
// Create a Stitcher class object with mode panoroma
Ptr<Stitcher> stitcher = Stitcher::create(mode);
// Command to stitch all the images present in the image array
Stitcher::Status status = stitcher->stitch(imgs, pano);
if (status != Stitcher::OK)
{
// Check if images could not be stitched
// status is OK if images are stitched successfully
cout << "Can't stitch images\n";
return -1;
}
// Store a new image stitched from the given
//set of images as "result.jpg"
imwrite("result.jpg", pano);
// Show the result
imshow("Result", pano);
waitKey(0);
return 0;
}

@ -43,12 +43,12 @@ int main(int argc, char** argv)
//120/2022-11-15_09-35-09
//155/2022-11-15_07-18-56
//2/2022-10-13_13-33-22
//1/2022-10-13_11-50-12
//v
//pb.load("../1/2022-10-13_11-50-12/snapshots/");
pb.load("../data/");
pb.load("../155/2022-11-15_07-18-56/snapshots/");
//test print all point info
pb.printPoints(0);
//pb.printPoints(0);
/* test get path
path: ../data/0000044.json;
@ -57,7 +57,7 @@ int main(int argc, char** argv)
*/
cout << pb.getPath(206.500,1051.00) << '\n';
pb.showPointImg();
//pb.showPointImg();
/*
vector<Point2d> res = pb.getAdjacents(Point2d(75.1,3220.80));
@ -69,8 +69,10 @@ int main(int argc, char** argv)
*/
//pb.stitchImgs();
cout <<"IMG HEIGHT:" << pb.imgHeightDeg <<"\n";
cout <<"IMG WIDTH DEG:" << pb.imgWidthDeg <<"\n";
pb.cumdump(650,525);
//cout <<"IMG HEIGHT:" << pb.imgHeightDeg <<"\n";
//cout <<"IMG WIDTH DEG:" << pb.imgWidthDeg <<"\n";
//pb.cumdump(770,605);
pb.patternMatchTry(770,605);
//pb.onlineStitchSIFT(1280,720,"online/");
}
Loading…
Cancel
Save