mirror of
https://github.com/debnarpavol/spajanie_snimkov_uprava_jasu.git
synced 2025-08-06 08:07:21 +02:00
added base files, updated readme
This commit is contained in:
71
src/test-kmeans.cpp
Normal file
71
src/test-kmeans.cpp
Normal file
@ -0,0 +1,71 @@
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <iostream>
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
// static void help()
|
||||
// {
|
||||
// cout << "\nThis program demonstrates kmeans clustering.\n"
|
||||
// "It generates an image with random points, then assigns a random number of cluster\n"
|
||||
// "centers and uses kmeans to move those cluster centers to their representitive location\n"
|
||||
// "Call\n"
|
||||
// "./kmeans\n" << endl;
|
||||
// }
|
||||
int main( int /*argc*/, char** /*argv*/ )
|
||||
{
|
||||
const int MAX_CLUSTERS = 5;
|
||||
Scalar colorTab[] =
|
||||
{
|
||||
Scalar(0, 0, 255),
|
||||
Scalar(0,255,0),
|
||||
Scalar(255,100,100),
|
||||
Scalar(255,0,255),
|
||||
Scalar(0,255,255)
|
||||
};
|
||||
Mat img(500, 500, CV_8UC3);
|
||||
RNG rng(12345);
|
||||
for(;;)
|
||||
{
|
||||
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
|
||||
int i, sampleCount = rng.uniform(1, 1001);
|
||||
Mat points(sampleCount, 1, CV_32FC2), labels;
|
||||
clusterCount = MIN(clusterCount, sampleCount);
|
||||
std::vector<Point2f> centers;
|
||||
/* generate random sample from multigaussian distribution */
|
||||
for( k = 0; k < clusterCount; k++ )
|
||||
{
|
||||
Point center;
|
||||
center.x = rng.uniform(0, img.cols);
|
||||
center.y = rng.uniform(0, img.rows);
|
||||
Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
|
||||
k == clusterCount - 1 ? sampleCount :
|
||||
(k+1)*sampleCount/clusterCount);
|
||||
rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
|
||||
}
|
||||
randShuffle(points, 1, &rng);
|
||||
double compactness = kmeans(points, clusterCount, labels,
|
||||
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
|
||||
3, KMEANS_PP_CENTERS, centers);
|
||||
img = Scalar::all(0);
|
||||
for( i = 0; i < sampleCount; i++ )
|
||||
{
|
||||
int clusterIdx = labels.at<int>(i);
|
||||
Point ipt = points.at<Point2f>(i);
|
||||
circle( img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA );
|
||||
}
|
||||
for (i = 0; i < (int)centers.size(); ++i)
|
||||
{
|
||||
Point2f c = centers[i];
|
||||
circle( img, c, 40, colorTab[i], 1, LINE_AA );
|
||||
}
|
||||
cout << "Compactness: " << compactness << endl;
|
||||
cout << "Labels rows" << labels.rows;
|
||||
cout << "Labels cols" << labels.cols;
|
||||
imshow("clusters", img);
|
||||
char key = (char)waitKey();
|
||||
if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user