You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

531 lines
18 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_OPERATIONS_HPP__
#define __OPENCV_CORE_OPERATIONS_HPP__
#ifndef __cplusplus
# error operations.hpp header must be compiled as C++
#endif
#include <cstdio>
//! @cond IGNORED
namespace cv
{
////////////////////////////// Matx methods depending on core API /////////////////////////////
namespace internal
{
template<typename _Tp, int m> struct Matx_FastInvOp
{
bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const
{
Matx<_Tp, m, m> temp = a;
// assume that b is all 0's on input => make it a unity matrix
for( int i = 0; i < m; i++ )
b(i, i) = (_Tp)1;
if( method == DECOMP_CHOLESKY )
return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m);
return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0;
}
};
template<typename _Tp> struct Matx_FastInvOp<_Tp, 2>
{
bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const
{
_Tp d = determinant(a);
if( d == 0 )
return false;
d = 1/d;
b(1,1) = a(0,0)*d;
b(0,0) = a(1,1)*d;
b(0,1) = -a(0,1)*d;
b(1,0) = -a(1,0)*d;
return true;
}
};
template<typename _Tp> struct Matx_FastInvOp<_Tp, 3>
{
bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int) const
{
_Tp d = (_Tp)determinant(a);
if( d == 0 )
return false;
d = 1/d;
b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d;
b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d;
b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d;
b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d;
b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d;
b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d;
b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d;
b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d;
b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d;
return true;
}
};
template<typename _Tp, int m, int n> struct Matx_FastSolveOp
{
bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b,
Matx<_Tp, m, n>& x, int method) const
{
Matx<_Tp, m, m> temp = a;
x = b;
if( method == DECOMP_CHOLESKY )
return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n);
return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0;
}
};
template<typename _Tp> struct Matx_FastSolveOp<_Tp, 2, 1>
{
bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b,
Matx<_Tp, 2, 1>& x, int) const
{
_Tp d = determinant(a);
if( d == 0 )
return false;
d = 1/d;
x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d;
x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d;
return true;
}
};
template<typename _Tp> struct Matx_FastSolveOp<_Tp, 3, 1>
{
bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b,
Matx<_Tp, 3, 1>& x, int) const
{
_Tp d = (_Tp)determinant(a);
if( d == 0 )
return false;
d = 1/d;
x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) -
a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) +
a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2)));
x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) -
b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) +
a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0)));
x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) -
a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) +
b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0)));
return true;
}
};
} // internal
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b)
{
Matx<_Tp,m,n> M;
cv::randu(M, Scalar(a), Scalar(b));
return M;
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b)
{
Matx<_Tp,m,n> M;
cv::randn(M, Scalar(a), Scalar(b));
return M;
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const
{
Matx<_Tp, n, m> b;
bool ok;
if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
ok = cv::internal::Matx_FastInvOp<_Tp, m>()(*this, b, method);
else
{
Mat A(*this, false), B(b, false);
ok = (invert(A, B, method) != 0);
}
if( NULL != p_is_ok ) { *p_is_ok = ok; }
return ok ? b : Matx<_Tp, n, m>::zeros();
}
template<typename _Tp, int m, int n> template<int l> inline
Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const
{
Matx<_Tp, n, l> x;
bool ok;
if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
ok = cv::internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method);
else
{
Mat A(*this, false), B(rhs, false), X(x, false);
ok = cv::solve(A, B, X, method);
}
return ok ? x : Matx<_Tp, n, l>::zeros();
}
////////////////////////// Augmenting algebraic & logical operations //////////////////////////
#define CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \
static inline A& operator op (A& a, const B& b) { cvop; return a; }
#define CV_MAT_AUG_OPERATOR(op, cvop, A, B) \
CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \
CV_MAT_AUG_OPERATOR1(op, cvop, const A, B)
#define CV_MAT_AUG_OPERATOR_T(op, cvop, A, B) \
template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \
template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, const A, B)
CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Mat)
CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Mat)
CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat)
CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (*=, a.convertTo(a, -1, b), Mat, double)
CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double)
CV_MAT_AUG_OPERATOR (/=, cv::divide(a,b,a), Mat, Mat)
CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double)
CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double)
CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Mat)
CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Mat)
CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Mat)
CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
#undef CV_MAT_AUG_OPERATOR_T
#undef CV_MAT_AUG_OPERATOR
#undef CV_MAT_AUG_OPERATOR1
///////////////////////////////////////////// SVD /////////////////////////////////////////////
inline SVD::SVD() {}
inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); }
inline void SVD::solveZ( InputArray m, OutputArray _dst )
{
Mat mtx = m.getMat();
SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV));
_dst.create(svd.vt.cols, 1, svd.vt.type());
Mat dst = _dst.getMat();
svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst);
}
template<typename _Tp, int m, int n, int nm> inline void
SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt )
{
CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");
Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false);
SVD::compute(_a, _w, _u, _vt);
CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]);
}
template<typename _Tp, int m, int n, int nm> inline void
SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w )
{
CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");
Mat _a(a, false), _w(w, false);
SVD::compute(_a, _w);
CV_Assert(_w.data == (uchar*)&w.val[0]);
}
template<typename _Tp, int m, int n, int nm, int nb> inline void
SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u,
const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs,
Matx<_Tp, n, nb>& dst )
{
CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");
Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false);
SVD::backSubst(_w, _u, _vt, _rhs, _dst);
CV_Assert(_dst.data == (uchar*)&dst.val[0]);
}
/////////////////////////////////// Multiply-with-Carry RNG ///////////////////////////////////
inline RNG::RNG() { state = 0xffffffff; }
inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; }
inline RNG::operator uchar() { return (uchar)next(); }
inline RNG::operator schar() { return (schar)next(); }
inline RNG::operator ushort() { return (ushort)next(); }
inline RNG::operator short() { return (short)next(); }
inline RNG::operator int() { return (int)next(); }
inline RNG::operator unsigned() { return next(); }
inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; }
inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next()) * 5.4210108624275221700372640043497e-20; }
inline unsigned RNG::operator ()(unsigned N) { return (unsigned)uniform(0,N); }
inline unsigned RNG::operator ()() { return next(); }
inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next() % (b - a) + a); }
inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; }
inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; }
inline unsigned RNG::next()
{
state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32);
return (unsigned)state;
}
//! returns the next unifomly-distributed random number of the specified type
template<typename _Tp> static inline _Tp randu()
{
return (_Tp)theRNG();
}
///////////////////////////////// Formatted string generation /////////////////////////////////
CV_EXPORTS String format( const char* fmt, ... );
///////////////////////////////// Formatted output of cv::Mat /////////////////////////////////
static inline
Ptr<Formatted> format(InputArray mtx, int fmt)
{
return Formatter::get(fmt)->format(mtx.getMat());
}
static inline
int print(Ptr<Formatted> fmtd, FILE* stream = stdout)
{
int written = 0;
fmtd->reset();
for(const char* str = fmtd->next(); str; str = fmtd->next())
written += fputs(str, stream);
return written;
}
static inline
int print(const Mat& mtx, FILE* stream = stdout)
{
return print(Formatter::get()->format(mtx), stream);
}
static inline
int print(const UMat& mtx, FILE* stream = stdout)
{
return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream);
}
template<typename _Tp> static inline
int print(const std::vector<Point_<_Tp> >& vec, FILE* stream = stdout)
{
return print(Formatter::get()->format(Mat(vec)), stream);
}
template<typename _Tp> static inline
int print(const std::vector<Point3_<_Tp> >& vec, FILE* stream = stdout)
{
return print(Formatter::get()->format(Mat(vec)), stream);
}
template<typename _Tp, int m, int n> static inline
int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout)
{
return print(Formatter::get()->format(cv::Mat(matx)), stream);
}
//! @endcond
/****************************************************************************************\
* Auxiliary algorithms *
\****************************************************************************************/
/** @brief Splits an element set into equivalency classes.
The generic function partition implements an \f$O(N^2)\f$ algorithm for splitting a set of \f$N\f$ elements
into one or more equivalency classes, as described in
<http://en.wikipedia.org/wiki/Disjoint-set_data_structure> . The function returns the number of
equivalency classes.
@param _vec Set of elements stored as a vector.
@param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] is
a 0-based cluster index of `vec[i]`.
@param predicate Equivalence predicate (pointer to a boolean function of two arguments or an
instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The
predicate returns true when the elements are certainly in the same class, and returns false if they
may or may not be in the same class.
@ingroup core_cluster
*/
template<typename _Tp, class _EqPredicate> int
partition( const std::vector<_Tp>& _vec, std::vector<int>& labels,
_EqPredicate predicate=_EqPredicate())
{
int i, j, N = (int)_vec.size();
const _Tp* vec = &_vec[0];
const int PARENT=0;
const int RANK=1;
std::vector<int> _nodes(N*2);
int (*nodes)[2] = (int(*)[2])&_nodes[0];
// The first O(N) pass: create N single-vertex trees
for(i = 0; i < N; i++)
{
nodes[i][PARENT]=-1;
nodes[i][RANK] = 0;
}
// The main O(N^2) pass: merge connected components
for( i = 0; i < N; i++ )
{
int root = i;
// find root
while( nodes[root][PARENT] >= 0 )
root = nodes[root][PARENT];
for( j = 0; j < N; j++ )
{
if( i == j || !predicate(vec[i], vec[j]))
continue;
int root2 = j;
while( nodes[root2][PARENT] >= 0 )
root2 = nodes[root2][PARENT];
if( root2 != root )
{
// unite both trees
int rank = nodes[root][RANK], rank2 = nodes[root2][RANK];
if( rank > rank2 )
nodes[root2][PARENT] = root;
else
{
nodes[root][PARENT] = root2;
nodes[root2][RANK] += rank == rank2;
root = root2;
}
CV_Assert( nodes[root][PARENT] < 0 );
int k = j, parent;
// compress the path from node2 to root
while( (parent = nodes[k][PARENT]) >= 0 )
{
nodes[k][PARENT] = root;
k = parent;
}
// compress the path from node to root
k = i;
while( (parent = nodes[k][PARENT]) >= 0 )
{
nodes[k][PARENT] = root;
k = parent;
}
}
}
}
// Final O(N) pass: enumerate classes
labels.resize(N);
int nclasses = 0;
for( i = 0; i < N; i++ )
{
int root = i;
while( nodes[root][PARENT] >= 0 )
root = nodes[root][PARENT];
// re-use the rank as the class label
if( nodes[root][RANK] >= 0 )
nodes[root][RANK] = ~nclasses++;
labels[i] = ~nodes[root][RANK];
}
return nclasses;
}
} // cv
#endif