Initial commit.
Final release of the project Anonymizer (2015). Project settings for the Qt Creator (ver. 3.6).
This commit is contained in:
306
3rdparty/include/opencv2/video/background_segm.hpp
vendored
Normal file
306
3rdparty/include/opencv2/video/background_segm.hpp
vendored
Normal file
@ -0,0 +1,306 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_BACKGROUND_SEGM_HPP__
|
||||
#define __OPENCV_BACKGROUND_SEGM_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup video_motion
|
||||
//! @{
|
||||
|
||||
/** @brief Base class for background/foreground segmentation. :
|
||||
|
||||
The class is only used to define the common interface for the whole family of background/foreground
|
||||
segmentation algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Computes a foreground mask.
|
||||
|
||||
@param image Next video frame.
|
||||
@param fgmask The output foreground mask as an 8-bit binary image.
|
||||
@param learningRate The value between 0 and 1 that indicates how fast the background model is
|
||||
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
|
||||
rate. 0 means that the background model is not updated at all, 1 means that the background model
|
||||
is completely reinitialized from the last frame.
|
||||
*/
|
||||
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
|
||||
|
||||
/** @brief Computes a background image.
|
||||
|
||||
@param backgroundImage The output background image.
|
||||
|
||||
@note Sometimes the background image can be very blurry, as it contain the average background
|
||||
statistics.
|
||||
*/
|
||||
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
|
||||
};
|
||||
|
||||
|
||||
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
|
||||
|
||||
The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004
|
||||
and @cite Zivkovic2006 .
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Returns the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
/** @brief Sets the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
/** @brief Returns the number of gaussian components in the background model
|
||||
*/
|
||||
CV_WRAP virtual int getNMixtures() const = 0;
|
||||
/** @brief Sets the number of gaussian components in the background model.
|
||||
|
||||
The model needs to be reinitalized to reserve memory.
|
||||
*/
|
||||
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
|
||||
|
||||
/** @brief Returns the "background ratio" parameter of the algorithm
|
||||
|
||||
If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
|
||||
considered background and added to the model as a center of a new component. It corresponds to TB
|
||||
parameter in the paper.
|
||||
*/
|
||||
CV_WRAP virtual double getBackgroundRatio() const = 0;
|
||||
/** @brief Sets the "background ratio" parameter of the algorithm
|
||||
*/
|
||||
CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
|
||||
|
||||
/** @brief Returns the variance threshold for the pixel-model match
|
||||
|
||||
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
|
||||
the background model or not. Related to Cthr from the paper.
|
||||
*/
|
||||
CV_WRAP virtual double getVarThreshold() const = 0;
|
||||
/** @brief Sets the variance threshold for the pixel-model match
|
||||
*/
|
||||
CV_WRAP virtual void setVarThreshold(double varThreshold) = 0;
|
||||
|
||||
/** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation
|
||||
|
||||
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
|
||||
existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
|
||||
is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
|
||||
value generates more components. A higher Tg value may result in a small number of components but
|
||||
they can grow too large.
|
||||
*/
|
||||
CV_WRAP virtual double getVarThresholdGen() const = 0;
|
||||
/** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation
|
||||
*/
|
||||
CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0;
|
||||
|
||||
/** @brief Returns the initial variance of each gaussian component
|
||||
*/
|
||||
CV_WRAP virtual double getVarInit() const = 0;
|
||||
/** @brief Sets the initial variance of each gaussian component
|
||||
*/
|
||||
CV_WRAP virtual void setVarInit(double varInit) = 0;
|
||||
|
||||
CV_WRAP virtual double getVarMin() const = 0;
|
||||
CV_WRAP virtual void setVarMin(double varMin) = 0;
|
||||
|
||||
CV_WRAP virtual double getVarMax() const = 0;
|
||||
CV_WRAP virtual void setVarMax(double varMax) = 0;
|
||||
|
||||
/** @brief Returns the complexity reduction threshold
|
||||
|
||||
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
|
||||
is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
|
||||
standard Stauffer&Grimson algorithm.
|
||||
*/
|
||||
CV_WRAP virtual double getComplexityReductionThreshold() const = 0;
|
||||
/** @brief Sets the complexity reduction threshold
|
||||
*/
|
||||
CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0;
|
||||
|
||||
/** @brief Returns the shadow detection flag
|
||||
|
||||
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
|
||||
details.
|
||||
*/
|
||||
CV_WRAP virtual bool getDetectShadows() const = 0;
|
||||
/** @brief Enables or disables shadow detection
|
||||
*/
|
||||
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
|
||||
|
||||
/** @brief Returns the shadow value
|
||||
|
||||
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
|
||||
in the mask always means background, 255 means foreground.
|
||||
*/
|
||||
CV_WRAP virtual int getShadowValue() const = 0;
|
||||
/** @brief Sets the shadow value
|
||||
*/
|
||||
CV_WRAP virtual void setShadowValue(int value) = 0;
|
||||
|
||||
/** @brief Returns the shadow threshold
|
||||
|
||||
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
|
||||
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
|
||||
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
|
||||
*Detecting Moving Shadows...*, IEEE PAMI,2003.
|
||||
*/
|
||||
CV_WRAP virtual double getShadowThreshold() const = 0;
|
||||
/** @brief Sets the shadow threshold
|
||||
*/
|
||||
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates MOG2 Background Subtractor
|
||||
|
||||
@param history Length of the history.
|
||||
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
|
||||
to decide whether a pixel is well described by the background model. This parameter does not
|
||||
affect the background update.
|
||||
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
|
||||
speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
|
||||
createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
|
||||
bool detectShadows=true);
|
||||
|
||||
/** @brief K-nearest neigbours - based Background/Foreground Segmentation Algorithm.
|
||||
|
||||
The class implements the K-nearest neigbours background subtraction described in @cite Zivkovic2006 .
|
||||
Very efficient if number of foreground pixels is low.
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Returns the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
/** @brief Sets the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
/** @brief Returns the number of data samples in the background model
|
||||
*/
|
||||
CV_WRAP virtual int getNSamples() const = 0;
|
||||
/** @brief Sets the number of data samples in the background model.
|
||||
|
||||
The model needs to be reinitalized to reserve memory.
|
||||
*/
|
||||
CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
|
||||
|
||||
/** @brief Returns the threshold on the squared distance between the pixel and the sample
|
||||
|
||||
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
|
||||
close to a data sample.
|
||||
*/
|
||||
CV_WRAP virtual double getDist2Threshold() const = 0;
|
||||
/** @brief Sets the threshold on the squared distance
|
||||
*/
|
||||
CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
|
||||
|
||||
/** @brief Returns the number of neighbours, the k in the kNN.
|
||||
|
||||
K is the number of samples that need to be within dist2Threshold in order to decide that that
|
||||
pixel is matching the kNN background model.
|
||||
*/
|
||||
CV_WRAP virtual int getkNNSamples() const = 0;
|
||||
/** @brief Sets the k in the kNN. How many nearest neigbours need to match.
|
||||
*/
|
||||
CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
|
||||
|
||||
/** @brief Returns the shadow detection flag
|
||||
|
||||
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
|
||||
details.
|
||||
*/
|
||||
CV_WRAP virtual bool getDetectShadows() const = 0;
|
||||
/** @brief Enables or disables shadow detection
|
||||
*/
|
||||
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
|
||||
|
||||
/** @brief Returns the shadow value
|
||||
|
||||
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
|
||||
in the mask always means background, 255 means foreground.
|
||||
*/
|
||||
CV_WRAP virtual int getShadowValue() const = 0;
|
||||
/** @brief Sets the shadow value
|
||||
*/
|
||||
CV_WRAP virtual void setShadowValue(int value) = 0;
|
||||
|
||||
/** @brief Returns the shadow threshold
|
||||
|
||||
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
|
||||
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
|
||||
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
|
||||
*Detecting Moving Shadows...*, IEEE PAMI,2003.
|
||||
*/
|
||||
CV_WRAP virtual double getShadowThreshold() const = 0;
|
||||
/** @brief Sets the shadow threshold
|
||||
*/
|
||||
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates KNN Background Subtractor
|
||||
|
||||
@param history Length of the history.
|
||||
@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
|
||||
whether a pixel is close to that sample. This parameter does not affect the background update.
|
||||
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
|
||||
speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
|
||||
createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
|
||||
bool detectShadows=true);
|
||||
|
||||
//! @} video_motion
|
||||
|
||||
} // cv
|
||||
|
||||
#endif
|
515
3rdparty/include/opencv2/video/tracking.hpp
vendored
Normal file
515
3rdparty/include/opencv2/video/tracking.hpp
vendored
Normal file
@ -0,0 +1,515 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TRACKING_HPP__
|
||||
#define __OPENCV_TRACKING_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup video_track
|
||||
//! @{
|
||||
|
||||
enum { OPTFLOW_USE_INITIAL_FLOW = 4,
|
||||
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
|
||||
OPTFLOW_FARNEBACK_GAUSSIAN = 256
|
||||
};
|
||||
|
||||
/** @brief Finds an object center, size, and orientation.
|
||||
|
||||
@param probImage Back projection of the object histogram. See calcBackProject.
|
||||
@param window Initial search window.
|
||||
@param criteria Stop criteria for the underlying meanShift.
|
||||
returns
|
||||
(in old interfaces) Number of iterations CAMSHIFT took to converge
|
||||
The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
|
||||
object center using meanShift and then adjusts the window size and finds the optimal rotation. The
|
||||
function returns the rotated rectangle structure that includes the object position, size, and
|
||||
orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
|
||||
|
||||
See the OpenCV sample camshiftdemo.c that tracks colored objects.
|
||||
|
||||
@note
|
||||
- (Python) A sample explaining the camshift tracking algorithm can be found at
|
||||
opencv_source_code/samples/python2/camshift.py
|
||||
*/
|
||||
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
|
||||
TermCriteria criteria );
|
||||
|
||||
/** @brief Finds an object on a back projection image.
|
||||
|
||||
@param probImage Back projection of the object histogram. See calcBackProject for details.
|
||||
@param window Initial search window.
|
||||
@param criteria Stop criteria for the iterative search algorithm.
|
||||
returns
|
||||
: Number of iterations CAMSHIFT took to converge.
|
||||
The function implements the iterative object search algorithm. It takes the input back projection of
|
||||
an object and the initial position. The mass center in window of the back projection image is
|
||||
computed and the search window center shifts to the mass center. The procedure is repeated until the
|
||||
specified number of iterations criteria.maxCount is done or until the window center shifts by less
|
||||
than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
|
||||
window size or orientation do not change during the search. You can simply pass the output of
|
||||
calcBackProject to this function. But better results can be obtained if you pre-filter the back
|
||||
projection and remove the noise. For example, you can do this by retrieving connected components
|
||||
with findContours , throwing away contours with small area ( contourArea ), and rendering the
|
||||
remaining contours with drawContours.
|
||||
|
||||
@note
|
||||
- A mean-shift tracking sample can be found at opencv_source_code/samples/cpp/camshiftdemo.cpp
|
||||
*/
|
||||
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
|
||||
|
||||
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
|
||||
|
||||
@param img 8-bit input image.
|
||||
@param pyramid output pyramid.
|
||||
@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
|
||||
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
|
||||
@param maxLevel 0-based maximal pyramid level number.
|
||||
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
|
||||
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
|
||||
@param pyrBorder the border mode for pyramid layers.
|
||||
@param derivBorder the border mode for gradients.
|
||||
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
|
||||
to force data copying.
|
||||
@return number of levels in constructed pyramid. Can be less than maxLevel.
|
||||
*/
|
||||
CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
|
||||
Size winSize, int maxLevel, bool withDerivatives = true,
|
||||
int pyrBorder = BORDER_REFLECT_101,
|
||||
int derivBorder = BORDER_CONSTANT,
|
||||
bool tryReuseInputImage = true );
|
||||
|
||||
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
|
||||
pyramids.
|
||||
|
||||
@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
|
||||
@param nextImg second input image or pyramid of the same size and the same type as prevImg.
|
||||
@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
|
||||
single-precision floating-point numbers.
|
||||
@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
|
||||
containing the calculated new positions of input features in the second image; when
|
||||
OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
|
||||
@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
|
||||
the flow for the corresponding features has been found, otherwise, it is set to 0.
|
||||
@param err output vector of errors; each element of the vector is set to an error for the
|
||||
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
|
||||
found then the error is not defined (use the status parameter to find such cases).
|
||||
@param winSize size of the search window at each pyramid level.
|
||||
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
|
||||
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
|
||||
algorithm will use as many levels as pyramids have but no more than maxLevel.
|
||||
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
|
||||
(after the specified maximum number of iterations criteria.maxCount or when the search window
|
||||
moves by less than criteria.epsilon.
|
||||
@param flags operation flags:
|
||||
- **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
|
||||
not set, then prevPts is copied to nextPts and is considered the initial estimate.
|
||||
- **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
|
||||
minEigThreshold description); if the flag is not set, then L1 distance between patches
|
||||
around the original and a moved point, divided by number of pixels in a window, is used as a
|
||||
error measure.
|
||||
@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
|
||||
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
|
||||
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
|
||||
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
|
||||
performance boost.
|
||||
|
||||
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
|
||||
@cite Bouguet00 . The function is parallelized with the TBB library.
|
||||
|
||||
@note
|
||||
|
||||
- An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv_source_code/samples/cpp/lkdemo.cpp
|
||||
- (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv_source_code/samples/python2/lk_track.py
|
||||
- (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
|
||||
opencv_source_code/samples/python2/lk_homography.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status, OutputArray err,
|
||||
Size winSize = Size(21,21), int maxLevel = 3,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
||||
int flags = 0, double minEigThreshold = 1e-4 );
|
||||
|
||||
/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
|
||||
|
||||
@param prev first 8-bit single-channel input image.
|
||||
@param next second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
||||
@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
|
||||
pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
|
||||
one.
|
||||
@param levels number of pyramid layers including the initial image; levels=1 means that no extra
|
||||
layers are created and only the original images are used.
|
||||
@param winsize averaging window size; larger values increase the algorithm robustness to image
|
||||
noise and give more chances for fast motion detection, but yield more blurred motion field.
|
||||
@param iterations number of iterations the algorithm does at each pyramid level.
|
||||
@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
|
||||
larger values mean that the image will be approximated with smoother surfaces, yielding more
|
||||
robust algorithm and more blurred motion field, typically poly_n =5 or 7.
|
||||
@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
|
||||
basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
|
||||
good value would be poly_sigma=1.5.
|
||||
@param flags operation flags that can be a combination of the following:
|
||||
- **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
|
||||
- **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
|
||||
filter instead of a box filter of the same size for optical flow estimation; usually, this
|
||||
option gives z more accurate flow than with a box filter, at the cost of lower speed;
|
||||
normally, winsize for a Gaussian window should be set to a larger value to achieve the same
|
||||
level of robustness.
|
||||
|
||||
The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
|
||||
|
||||
\f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f]
|
||||
|
||||
@note
|
||||
|
||||
- An example using the optical flow algorithm described by Gunnar Farneback can be found at
|
||||
opencv_source_code/samples/cpp/fback.cpp
|
||||
- (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
|
||||
found at opencv_source_code/samples/python2/opt_flow.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
|
||||
double pyr_scale, int levels, int winsize,
|
||||
int iterations, int poly_n, double poly_sigma,
|
||||
int flags );
|
||||
|
||||
/** @brief Computes an optimal affine transformation between two 2D point sets.
|
||||
|
||||
@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
|
||||
@param dst Second input 2D point set of the same size and the same type as A, or another image.
|
||||
@param fullAffine If true, the function finds an optimal affine transformation with no additional
|
||||
restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
|
||||
limited to combinations of translation, rotation, and uniform scaling (5 degrees of freedom).
|
||||
|
||||
The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
|
||||
approximates best the affine transformation between:
|
||||
|
||||
* Two point sets
|
||||
* Two raster images. In this case, the function first finds some features in the src image and
|
||||
finds the corresponding features in dst image. After that, the problem is reduced to the first
|
||||
case.
|
||||
In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
|
||||
2x1 vector *b* so that:
|
||||
|
||||
\f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f]
|
||||
where src[i] and dst[i] are the i-th points in src and dst, respectively
|
||||
\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
|
||||
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f]
|
||||
when fullAffine=false.
|
||||
|
||||
@sa
|
||||
getAffineTransform, getPerspectiveTransform, findHomography
|
||||
*/
|
||||
CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
|
||||
|
||||
|
||||
enum
|
||||
{
|
||||
MOTION_TRANSLATION = 0,
|
||||
MOTION_EUCLIDEAN = 1,
|
||||
MOTION_AFFINE = 2,
|
||||
MOTION_HOMOGRAPHY = 3
|
||||
};
|
||||
|
||||
/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
|
||||
|
||||
@param templateImage single-channel template image; CV_8U or CV_32F array.
|
||||
@param inputImage single-channel input image which should be warped with the final warpMatrix in
|
||||
order to provide an image similar to templateImage, same type as temlateImage.
|
||||
@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
|
||||
@param motionType parameter, specifying the type of motion:
|
||||
- **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
|
||||
the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
|
||||
estimated.
|
||||
- **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
|
||||
parameters are estimated; warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
|
||||
warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
|
||||
estimated;\`warpMatrix\` is \f$3\times 3\f$.
|
||||
@param criteria parameter, specifying the termination criteria of the ECC algorithm;
|
||||
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
|
||||
iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
|
||||
Default values are shown in the declaration above.
|
||||
@param inputMask An optional mask to indicate valid values of inputImage.
|
||||
|
||||
The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
|
||||
(@cite EP08), that is
|
||||
|
||||
\f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
|
||||
|
||||
where
|
||||
|
||||
\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
|
||||
|
||||
(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
|
||||
correlation coefficient, that is the correlation coefficient between the template image and the
|
||||
final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
|
||||
row is ignored.
|
||||
|
||||
Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
|
||||
area-based alignment that builds on intensity similarities. In essence, the function updates the
|
||||
initial transformation that roughly aligns the images. If this information is missing, the identity
|
||||
warp (unity matrix) should be given as input. Note that if images undergo strong
|
||||
displacements/rotations, an initial transformation that roughly aligns the images is necessary
|
||||
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
|
||||
content approximately). Use inverse warping in the second image to take an image close to the first
|
||||
one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
|
||||
sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
|
||||
an exception if algorithm does not converges.
|
||||
|
||||
@sa
|
||||
estimateRigidTransform, findHomography
|
||||
*/
|
||||
CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
|
||||
InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
|
||||
InputArray inputMask = noArray());
|
||||
|
||||
/** @brief Kalman filter class.
|
||||
|
||||
The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
|
||||
@cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
|
||||
an extended Kalman filter functionality. See the OpenCV sample kalman.cpp.
|
||||
|
||||
@note
|
||||
|
||||
- An example using the standard Kalman filter can be found at
|
||||
opencv_source_code/samples/cpp/kalman.cpp
|
||||
*/
|
||||
class CV_EXPORTS_W KalmanFilter
|
||||
{
|
||||
public:
|
||||
/** @brief The constructors.
|
||||
|
||||
@note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
|
||||
with cvReleaseKalman(&kalmanFilter)
|
||||
*/
|
||||
CV_WRAP KalmanFilter();
|
||||
/** @overload
|
||||
@param dynamParams Dimensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
||||
*/
|
||||
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
/** @brief Re-initializes Kalman filter. The previous content is destroyed.
|
||||
|
||||
@param dynamParams Dimensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
||||
*/
|
||||
void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
/** @brief Computes a predicted state.
|
||||
|
||||
@param control The optional input control
|
||||
*/
|
||||
CV_WRAP const Mat& predict( const Mat& control = Mat() );
|
||||
|
||||
/** @brief Updates the predicted state from the measurement.
|
||||
|
||||
@param measurement The measured system parameters
|
||||
*/
|
||||
CV_WRAP const Mat& correct( const Mat& measurement );
|
||||
|
||||
CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
|
||||
CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
|
||||
CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
|
||||
CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
|
||||
CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
|
||||
CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
|
||||
CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
|
||||
CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
|
||||
|
||||
// temporary matrices
|
||||
Mat temp1;
|
||||
Mat temp2;
|
||||
Mat temp3;
|
||||
Mat temp4;
|
||||
Mat temp5;
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Calculates an optical flow.
|
||||
|
||||
@param I0 first 8-bit single-channel input image.
|
||||
@param I1 second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
||||
*/
|
||||
CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
|
||||
/** @brief Releases all inner buffers.
|
||||
*/
|
||||
CV_WRAP virtual void collectGarbage() = 0;
|
||||
};
|
||||
|
||||
/** @brief "Dual TV L1" Optical Flow Algorithm.
|
||||
|
||||
The class implements the "Dual TV L1" optical flow algorithm described in @cite Zach2007 and
|
||||
@cite Javier2012 .
|
||||
Here are important members of the class that control the algorithm, which you can set after
|
||||
constructing the class instance:
|
||||
|
||||
- member double tau
|
||||
Time step of the numerical scheme.
|
||||
|
||||
- member double lambda
|
||||
Weight parameter for the data term, attachment parameter. This is the most relevant
|
||||
parameter, which determines the smoothness of the output. The smaller this parameter is,
|
||||
the smoother the solutions we obtain. It depends on the range of motions of the images, so
|
||||
its value should be adapted to each image sequence.
|
||||
|
||||
- member double theta
|
||||
Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
|
||||
attachment and the regularization terms. In theory, it should have a small value in order
|
||||
to maintain both parts in correspondence. The method is stable for a large range of values
|
||||
of this parameter.
|
||||
|
||||
- member int nscales
|
||||
Number of scales used to create the pyramid of images.
|
||||
|
||||
- member int warps
|
||||
Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
|
||||
I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
|
||||
method. It also affects the running time, so it is a compromise between speed and
|
||||
accuracy.
|
||||
|
||||
- member double epsilon
|
||||
Stopping criterion threshold used in the numerical scheme, which is a trade-off between
|
||||
precision and running time. A small value will yield more accurate solutions at the
|
||||
expense of a slower convergence.
|
||||
|
||||
- member int iterations
|
||||
Stopping criterion iterations number used in the numerical scheme.
|
||||
|
||||
C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
||||
Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
*/
|
||||
class CV_EXPORTS_W DualTVL1OpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
//! @brief Time step of the numerical scheme
|
||||
/** @see setTau */
|
||||
virtual double getTau() const = 0;
|
||||
/** @copybrief getTau @see getTau */
|
||||
virtual void setTau(double val) = 0;
|
||||
//! @brief Weight parameter for the data term, attachment parameter
|
||||
/** @see setLambda */
|
||||
virtual double getLambda() const = 0;
|
||||
/** @copybrief getLambda @see getLambda */
|
||||
virtual void setLambda(double val) = 0;
|
||||
//! @brief Weight parameter for (u - v)^2, tightness parameter
|
||||
/** @see setTheta */
|
||||
virtual double getTheta() const = 0;
|
||||
/** @copybrief getTheta @see getTheta */
|
||||
virtual void setTheta(double val) = 0;
|
||||
//! @brief coefficient for additional illumination variation term
|
||||
/** @see setGamma */
|
||||
virtual double getGamma() const = 0;
|
||||
/** @copybrief getGamma @see getGamma */
|
||||
virtual void setGamma(double val) = 0;
|
||||
//! @brief Number of scales used to create the pyramid of images
|
||||
/** @see setScalesNumber */
|
||||
virtual int getScalesNumber() const = 0;
|
||||
/** @copybrief getScalesNumber @see getScalesNumber */
|
||||
virtual void setScalesNumber(int val) = 0;
|
||||
//! @brief Number of warpings per scale
|
||||
/** @see setWarpingsNumber */
|
||||
virtual int getWarpingsNumber() const = 0;
|
||||
/** @copybrief getWarpingsNumber @see getWarpingsNumber */
|
||||
virtual void setWarpingsNumber(int val) = 0;
|
||||
//! @brief Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
|
||||
/** @see setEpsilon */
|
||||
virtual double getEpsilon() const = 0;
|
||||
/** @copybrief getEpsilon @see getEpsilon */
|
||||
virtual void setEpsilon(double val) = 0;
|
||||
//! @brief Inner iterations (between outlier filtering) used in the numerical scheme
|
||||
/** @see setInnerIterations */
|
||||
virtual int getInnerIterations() const = 0;
|
||||
/** @copybrief getInnerIterations @see getInnerIterations */
|
||||
virtual void setInnerIterations(int val) = 0;
|
||||
//! @brief Outer iterations (number of inner loops) used in the numerical scheme
|
||||
/** @see setOuterIterations */
|
||||
virtual int getOuterIterations() const = 0;
|
||||
/** @copybrief getOuterIterations @see getOuterIterations */
|
||||
virtual void setOuterIterations(int val) = 0;
|
||||
//! @brief Use initial flow
|
||||
/** @see setUseInitialFlow */
|
||||
virtual bool getUseInitialFlow() const = 0;
|
||||
/** @copybrief getUseInitialFlow @see getUseInitialFlow */
|
||||
virtual void setUseInitialFlow(bool val) = 0;
|
||||
//! @brief Step between scales (<1)
|
||||
/** @see setScaleStep */
|
||||
virtual double getScaleStep() const = 0;
|
||||
/** @copybrief getScaleStep @see getScaleStep */
|
||||
virtual void setScaleStep(double val) = 0;
|
||||
//! @brief Median filter kernel size (1 = no filter) (3 or 5)
|
||||
/** @see setMedianFiltering */
|
||||
virtual int getMedianFiltering() const = 0;
|
||||
/** @copybrief getMedianFiltering @see getMedianFiltering */
|
||||
virtual void setMedianFiltering(int val) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates instance of cv::DenseOpticalFlow
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1();
|
||||
|
||||
//! @} video_track
|
||||
|
||||
} // cv
|
||||
|
||||
#endif
|
232
3rdparty/include/opencv2/video/tracking_c.h
vendored
Normal file
232
3rdparty/include/opencv2/video/tracking_c.h
vendored
Normal file
@ -0,0 +1,232 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TRACKING_C_H__
|
||||
#define __OPENCV_TRACKING_C_H__
|
||||
|
||||
#include "opencv2/imgproc/types_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @addtogroup video_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/****************************************************************************************\
|
||||
* Motion Analysis *
|
||||
\****************************************************************************************/
|
||||
|
||||
/************************************ optical flow ***************************************/
|
||||
|
||||
#define CV_LKFLOW_PYR_A_READY 1
|
||||
#define CV_LKFLOW_PYR_B_READY 2
|
||||
#define CV_LKFLOW_INITIAL_GUESSES 4
|
||||
#define CV_LKFLOW_GET_MIN_EIGENVALS 8
|
||||
|
||||
/* It is Lucas & Kanade method, modified to use pyramids.
|
||||
Also it does several iterations to get optical flow for
|
||||
every point at every pyramid level.
|
||||
Calculates optical flow between two images for certain set of points (i.e.
|
||||
it is a "sparse" optical flow, which is opposite to the previous 3 methods) */
|
||||
CVAPI(void) cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr,
|
||||
CvArr* prev_pyr, CvArr* curr_pyr,
|
||||
const CvPoint2D32f* prev_features,
|
||||
CvPoint2D32f* curr_features,
|
||||
int count,
|
||||
CvSize win_size,
|
||||
int level,
|
||||
char* status,
|
||||
float* track_error,
|
||||
CvTermCriteria criteria,
|
||||
int flags );
|
||||
|
||||
|
||||
/* Modification of a previous sparse optical flow algorithm to calculate
|
||||
affine flow */
|
||||
CVAPI(void) cvCalcAffineFlowPyrLK( const CvArr* prev, const CvArr* curr,
|
||||
CvArr* prev_pyr, CvArr* curr_pyr,
|
||||
const CvPoint2D32f* prev_features,
|
||||
CvPoint2D32f* curr_features,
|
||||
float* matrices, int count,
|
||||
CvSize win_size, int level,
|
||||
char* status, float* track_error,
|
||||
CvTermCriteria criteria, int flags );
|
||||
|
||||
/* Estimate rigid transformation between 2 images or 2 point sets */
|
||||
CVAPI(int) cvEstimateRigidTransform( const CvArr* A, const CvArr* B,
|
||||
CvMat* M, int full_affine );
|
||||
|
||||
/* Estimate optical flow for each pixel using the two-frame G. Farneback algorithm */
|
||||
CVAPI(void) cvCalcOpticalFlowFarneback( const CvArr* prev, const CvArr* next,
|
||||
CvArr* flow, double pyr_scale, int levels,
|
||||
int winsize, int iterations, int poly_n,
|
||||
double poly_sigma, int flags );
|
||||
|
||||
/********************************* motion templates *************************************/
|
||||
|
||||
/****************************************************************************************\
|
||||
* All the motion template functions work only with single channel images. *
|
||||
* Silhouette image must have depth IPL_DEPTH_8U or IPL_DEPTH_8S *
|
||||
* Motion history image must have depth IPL_DEPTH_32F, *
|
||||
* Gradient mask - IPL_DEPTH_8U or IPL_DEPTH_8S, *
|
||||
* Motion orientation image - IPL_DEPTH_32F *
|
||||
* Segmentation mask - IPL_DEPTH_32F *
|
||||
* All the angles are in degrees, all the times are in milliseconds *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* Updates motion history image given motion silhouette */
|
||||
CVAPI(void) cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi,
|
||||
double timestamp, double duration );
|
||||
|
||||
/* Calculates gradient of the motion history image and fills
|
||||
a mask indicating where the gradient is valid */
|
||||
CVAPI(void) cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation,
|
||||
double delta1, double delta2,
|
||||
int aperture_size CV_DEFAULT(3));
|
||||
|
||||
/* Calculates average motion direction within a selected motion region
|
||||
(region can be selected by setting ROIs and/or by composing a valid gradient mask
|
||||
with the region mask) */
|
||||
CVAPI(double) cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask,
|
||||
const CvArr* mhi, double timestamp,
|
||||
double duration );
|
||||
|
||||
/* Splits a motion history image into a few parts corresponding to separate independent motions
|
||||
(e.g. left hand, right hand) */
|
||||
CVAPI(CvSeq*) cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask,
|
||||
CvMemStorage* storage,
|
||||
double timestamp, double seg_thresh );
|
||||
|
||||
/****************************************************************************************\
|
||||
* Tracking *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* Implements CAMSHIFT algorithm - determines object position, size and orientation
|
||||
from the object histogram back project (extension of meanshift) */
|
||||
CVAPI(int) cvCamShift( const CvArr* prob_image, CvRect window,
|
||||
CvTermCriteria criteria, CvConnectedComp* comp,
|
||||
CvBox2D* box CV_DEFAULT(NULL) );
|
||||
|
||||
/* Implements MeanShift algorithm - determines object position
|
||||
from the object histogram back project */
|
||||
CVAPI(int) cvMeanShift( const CvArr* prob_image, CvRect window,
|
||||
CvTermCriteria criteria, CvConnectedComp* comp );
|
||||
|
||||
/*
|
||||
standard Kalman filter (in G. Welch' and G. Bishop's notation):
|
||||
|
||||
x(k)=A*x(k-1)+B*u(k)+w(k) p(w)~N(0,Q)
|
||||
z(k)=H*x(k)+v(k), p(v)~N(0,R)
|
||||
*/
|
||||
typedef struct CvKalman
|
||||
{
|
||||
int MP; /* number of measurement vector dimensions */
|
||||
int DP; /* number of state vector dimensions */
|
||||
int CP; /* number of control vector dimensions */
|
||||
|
||||
/* backward compatibility fields */
|
||||
#if 1
|
||||
float* PosterState; /* =state_pre->data.fl */
|
||||
float* PriorState; /* =state_post->data.fl */
|
||||
float* DynamMatr; /* =transition_matrix->data.fl */
|
||||
float* MeasurementMatr; /* =measurement_matrix->data.fl */
|
||||
float* MNCovariance; /* =measurement_noise_cov->data.fl */
|
||||
float* PNCovariance; /* =process_noise_cov->data.fl */
|
||||
float* KalmGainMatr; /* =gain->data.fl */
|
||||
float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
|
||||
float* PosterErrorCovariance;/* =error_cov_post->data.fl */
|
||||
float* Temp1; /* temp1->data.fl */
|
||||
float* Temp2; /* temp2->data.fl */
|
||||
#endif
|
||||
|
||||
CvMat* state_pre; /* predicted state (x'(k)):
|
||||
x(k)=A*x(k-1)+B*u(k) */
|
||||
CvMat* state_post; /* corrected state (x(k)):
|
||||
x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */
|
||||
CvMat* transition_matrix; /* state transition matrix (A) */
|
||||
CvMat* control_matrix; /* control matrix (B)
|
||||
(it is not used if there is no control)*/
|
||||
CvMat* measurement_matrix; /* measurement matrix (H) */
|
||||
CvMat* process_noise_cov; /* process noise covariance matrix (Q) */
|
||||
CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
|
||||
CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)):
|
||||
P'(k)=A*P(k-1)*At + Q)*/
|
||||
CvMat* gain; /* Kalman gain matrix (K(k)):
|
||||
K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/
|
||||
CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
|
||||
P(k)=(I-K(k)*H)*P'(k) */
|
||||
CvMat* temp1; /* temporary matrices */
|
||||
CvMat* temp2;
|
||||
CvMat* temp3;
|
||||
CvMat* temp4;
|
||||
CvMat* temp5;
|
||||
} CvKalman;
|
||||
|
||||
/* Creates Kalman filter and sets A, B, Q, R and state to some initial values */
|
||||
CVAPI(CvKalman*) cvCreateKalman( int dynam_params, int measure_params,
|
||||
int control_params CV_DEFAULT(0));
|
||||
|
||||
/* Releases Kalman filter state */
|
||||
CVAPI(void) cvReleaseKalman( CvKalman** kalman);
|
||||
|
||||
/* Updates Kalman filter by time (predicts future state of the system) */
|
||||
CVAPI(const CvMat*) cvKalmanPredict( CvKalman* kalman,
|
||||
const CvMat* control CV_DEFAULT(NULL));
|
||||
|
||||
/* Updates Kalman filter by measurement
|
||||
(corrects state of the system and internal matrices) */
|
||||
CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement );
|
||||
|
||||
#define cvKalmanUpdateByTime cvKalmanPredict
|
||||
#define cvKalmanUpdateByMeasurement cvKalmanCorrect
|
||||
|
||||
/** @} video_c */
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
|
||||
#endif // __OPENCV_TRACKING_C_H__
|
48
3rdparty/include/opencv2/video/video.hpp
vendored
Normal file
48
3rdparty/include/opencv2/video/video.hpp
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef __OPENCV_BUILD
|
||||
#error this is a compatibility header which should not be used inside the OpenCV library
|
||||
#endif
|
||||
|
||||
#include "opencv2/video.hpp"
|
Reference in New Issue
Block a user