Initial commit.

Final release of the project Anonymizer (2015).
Project settings for the Qt Creator (ver. 3.6).
This commit is contained in:
2016-01-25 18:17:34 +01:00
commit 22dbc25cce
479 changed files with 141991 additions and 0 deletions

View File

@ -0,0 +1,211 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_DEVICE_BLOCK_HPP__
#define __OPENCV_CUDA_DEVICE_BLOCK_HPP__
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
struct Block
{
static __device__ __forceinline__ unsigned int id()
{
return blockIdx.x;
}
static __device__ __forceinline__ unsigned int stride()
{
return blockDim.x * blockDim.y * blockDim.z;
}
static __device__ __forceinline__ void sync()
{
__syncthreads();
}
static __device__ __forceinline__ int flattenedThreadId()
{
return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
}
template<typename It, typename T>
static __device__ __forceinline__ void fill(It beg, It end, const T& value)
{
int STRIDE = stride();
It t = beg + flattenedThreadId();
for(; t < end; t += STRIDE)
*t = value;
}
template<typename OutIt, typename T>
static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
{
int STRIDE = stride();
int tid = flattenedThreadId();
value += tid;
for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
*t = value;
}
template<typename InIt, typename OutIt>
static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = *t;
}
template<typename InIt, typename OutIt, class UnOp>
static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = op(*t);
}
template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
{
int STRIDE = stride();
InIt1 t1 = beg1 + flattenedThreadId();
InIt2 t2 = beg2 + flattenedThreadId();
OutIt o = out + (t1 - beg1);
for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
*o = op(*t1, *t2);
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid];
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid] = init;
__syncthreads();
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
__syncthreads();
return buffer[0];
}
template <typename T, class BinOp>
static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
{
int ftid = flattenedThreadId();
int sft = stride();
if (sft < n)
{
for (unsigned int i = sft + ftid; i < n; i += sft)
data[ftid] = op(data[ftid], data[i]);
__syncthreads();
n = sft;
}
while (n > 1)
{
unsigned int half = n/2;
if (ftid < half)
data[ftid] = op(data[ftid], data[n - ftid - 1]);
__syncthreads();
n = n - half;
}
}
};
}}}
//! @endcond
#endif /* __OPENCV_CUDA_DEVICE_BLOCK_HPP__ */

View File

@ -0,0 +1,722 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_BORDER_INTERPOLATE_HPP__
#define __OPENCV_CUDA_BORDER_INTERPOLATE_HPP__
#include "saturate_cast.hpp"
#include "vec_traits.hpp"
#include "vec_math.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
//////////////////////////////////////////////////////////////
// BrdConstant
template <typename D> struct BrdRowConstant
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowConstant(int width_, const D& val_ = VecTraits<D>::all(0)) : width(width_), val(val_) {}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return x >= 0 ? saturate_cast<D>(data[x]) : val;
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return x < width ? saturate_cast<D>(data[x]) : val;
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return (x >= 0 && x < width) ? saturate_cast<D>(data[x]) : val;
}
int width;
D val;
};
template <typename D> struct BrdColConstant
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColConstant(int height_, const D& val_ = VecTraits<D>::all(0)) : height(height_), val(val_) {}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return y >= 0 ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return y < height ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return (y >= 0 && y < height) ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
}
int height;
D val;
};
template <typename D> struct BrdConstant
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdConstant(int height_, int width_, const D& val_ = VecTraits<D>::all(0)) : height(height_), width(width_), val(val_)
{
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(((const T*)((const uchar*)data + y * step))[x]) : val;
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(src(y, x)) : val;
}
int height;
int width;
D val;
};
//////////////////////////////////////////////////////////////
// BrdReplicate
template <typename D> struct BrdRowReplicate
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowReplicate(int width) : last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowReplicate(int width, U) : last_col(width - 1) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::max(x, 0);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::min(x, last_col);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int last_col;
};
template <typename D> struct BrdColReplicate
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColReplicate(int height) : last_row(height - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdColReplicate(int height, U) : last_row(height - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::max(y, 0);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::min(y, last_row);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const T*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const T*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const T*)((const char*)data + idx_row(y) * step));
}
int last_row;
};
template <typename D> struct BrdReplicate
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdReplicate(int height, int width) : last_row(height - 1), last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdReplicate(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::max(y, 0);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::min(y, last_row);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::max(x, 0);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::min(x, last_col);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int last_row;
int last_col;
};
//////////////////////////////////////////////////////////////
// BrdReflect101
template <typename D> struct BrdRowReflect101
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowReflect101(int width) : last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowReflect101(int width, U) : last_col(width - 1) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::abs(x) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int last_col;
};
template <typename D> struct BrdColReflect101
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColReflect101(int height) : last_row(height - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdColReflect101(int height, U) : last_row(height - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::abs(y) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
}
int last_row;
};
template <typename D> struct BrdReflect101
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdReflect101(int height, int width) : last_row(height - 1), last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdReflect101(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::abs(y) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::abs(x) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int last_row;
int last_col;
};
//////////////////////////////////////////////////////////////
// BrdReflect
template <typename D> struct BrdRowReflect
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowReflect(int width) : last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowReflect(int width, U) : last_col(width - 1) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (::abs(x) - (x < 0)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::abs(last_col - ::abs(last_col - x) + (x > last_col)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_high(::abs(x) - (x < 0));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int last_col;
};
template <typename D> struct BrdColReflect
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColReflect(int height) : last_row(height - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdColReflect(int height, U) : last_row(height - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (::abs(y) - (y < 0)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::abs(last_row - ::abs(last_row - y) + (y > last_row)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_high(::abs(y) - (y < 0));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
}
int last_row;
};
template <typename D> struct BrdReflect
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdReflect(int height, int width) : last_row(height - 1), last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdReflect(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (::abs(y) - (y < 0)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return /*::abs*/(last_row - ::abs(last_row - y) + (y > last_row)) /*% (last_row + 1)*/;
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (::abs(x) - (x < 0)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return (last_col - ::abs(last_col - x) + (x > last_col));
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int last_row;
int last_col;
};
//////////////////////////////////////////////////////////////
// BrdWrap
template <typename D> struct BrdRowWrap
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowWrap(int width_) : width(width_) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowWrap(int width_, U) : width(width_) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (x >= 0) * x + (x < 0) * (x - ((x - width + 1) / width) * width);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return (x < width) * x + (x >= width) * (x % width);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_high(idx_col_low(x));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int width;
};
template <typename D> struct BrdColWrap
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColWrap(int height_) : height(height_) {}
template <typename U> __host__ __device__ __forceinline__ BrdColWrap(int height_, U) : height(height_) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (y >= 0) * y + (y < 0) * (y - ((y - height + 1) / height) * height);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return (y < height) * y + (y >= height) * (y % height);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_high(idx_row_low(y));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
}
int height;
};
template <typename D> struct BrdWrap
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdWrap(int height_, int width_) :
height(height_), width(width_)
{
}
template <typename U>
__host__ __device__ __forceinline__ BrdWrap(int height_, int width_, U) :
height(height_), width(width_)
{
}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (y >= 0) * y + (y < 0) * (y - ((y - height + 1) / height) * height);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return (y < height) * y + (y >= height) * (y % height);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_high(idx_row_low(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (x >= 0) * x + (x < 0) * (x - ((x - width + 1) / width) * width);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return (x < width) * x + (x >= width) * (x % width);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_high(idx_col_low(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int height;
int width;
};
//////////////////////////////////////////////////////////////
// BorderReader
template <typename Ptr2D, typename B> struct BorderReader
{
typedef typename B::result_type elem_type;
typedef typename Ptr2D::index_type index_type;
__host__ __device__ __forceinline__ BorderReader(const Ptr2D& ptr_, const B& b_) : ptr(ptr_), b(b_) {}
__device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const
{
return b.at(y, x, ptr);
}
Ptr2D ptr;
B b;
};
// under win32 there is some bug with templated types that passed as kernel parameters
// with this specialization all works fine
template <typename Ptr2D, typename D> struct BorderReader< Ptr2D, BrdConstant<D> >
{
typedef typename BrdConstant<D>::result_type elem_type;
typedef typename Ptr2D::index_type index_type;
__host__ __device__ __forceinline__ BorderReader(const Ptr2D& src_, const BrdConstant<D>& b) :
src(src_), height(b.height), width(b.width), val(b.val)
{
}
__device__ __forceinline__ D operator ()(index_type y, index_type x) const
{
return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(src(y, x)) : val;
}
Ptr2D src;
int height;
int width;
D val;
};
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_BORDER_INTERPOLATE_HPP__

View File

@ -0,0 +1,309 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_COLOR_HPP__
#define __OPENCV_CUDA_COLOR_HPP__
#include "detail/color_detail.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
// All OPENCV_CUDA_IMPLEMENT_*_TRAITS(ColorSpace1_to_ColorSpace2, ...) macros implements
// template <typename T> class ColorSpace1_to_ColorSpace2_traits
// {
// typedef ... functor_type;
// static __host__ __device__ functor_type create_functor();
// };
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgba, 4, 4, 2)
#undef OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr555, 3, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr565, 3, 0, 6)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr555, 3, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr565, 3, 2, 6)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr555, 4, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr565, 4, 0, 6)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr555, 4, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr565, 4, 2, 6)
#undef OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgb, 3, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgb, 3, 2, 6)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgr, 3, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgr, 3, 0, 6)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgba, 4, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgba, 4, 2, 6)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgra, 4, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgra, 4, 0, 6)
#undef OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgr, 3)
OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgra, 4)
#undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr555, 5)
OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr565, 6)
#undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr555_to_gray, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr565_to_gray, 6)
#undef OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgb_to_gray, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgr_to_gray, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgba_to_gray, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgra_to_gray, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab4, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab4, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab4, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab4, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab4, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab4, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab4, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab4, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgb, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgb, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgba, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgba, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgr, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgr, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgra, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgra, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgb, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgb, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgba, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgba, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgr, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgr, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgra, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgra, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv4, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv4, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv4, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv4, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv4, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv4, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv4, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv4, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgb, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgb, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgba, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgba, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgr, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgr, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgra, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgra, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgb, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgb, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgba, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgba, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgr, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgr, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgra, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgra, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_BORDER_INTERPOLATE_HPP__

View File

@ -0,0 +1,109 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_COMMON_HPP__
#define __OPENCV_CUDA_COMMON_HPP__
#include <cuda_runtime.h>
#include "opencv2/core/cuda_types.hpp"
#include "opencv2/core/cvdef.h"
#include "opencv2/core/base.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
#ifndef CV_PI_F
#ifndef CV_PI
#define CV_PI_F 3.14159265f
#else
#define CV_PI_F ((float)CV_PI)
#endif
#endif
namespace cv { namespace cuda {
static inline void checkCudaError(cudaError_t err, const char* file, const int line, const char* func)
{
if (cudaSuccess != err)
cv::error(cv::Error::GpuApiCallError, cudaGetErrorString(err), func, file, line);
}
}}
#ifndef cudaSafeCall
#define cudaSafeCall(expr) cv::cuda::checkCudaError(expr, __FILE__, __LINE__, CV_Func)
#endif
namespace cv { namespace cuda
{
template <typename T> static inline bool isAligned(const T* ptr, size_t size)
{
return reinterpret_cast<size_t>(ptr) % size == 0;
}
static inline bool isAligned(size_t step, size_t size)
{
return step % size == 0;
}
}}
namespace cv { namespace cuda
{
namespace device
{
__host__ __device__ __forceinline__ int divUp(int total, int grain)
{
return (total + grain - 1) / grain;
}
template<class T> inline void bindTexture(const textureReference* tex, const PtrStepSz<T>& img)
{
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
}
}
}}
//! @endcond
#endif // __OPENCV_CUDA_COMMON_HPP__

View File

@ -0,0 +1,113 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_DATAMOV_UTILS_HPP__
#define __OPENCV_CUDA_DATAMOV_UTILS_HPP__
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 200
// for Fermi memory space is detected automatically
template <typename T> struct ForceGlob
{
__device__ __forceinline__ static void Load(const T* ptr, int offset, T& val) { val = ptr[offset]; }
};
#else // __CUDA_ARCH__ >= 200
#if defined(_WIN64) || defined(__LP64__)
// 64-bit register modifier for inlined asm
#define OPENCV_CUDA_ASM_PTR "l"
#else
// 32-bit register modifier for inlined asm
#define OPENCV_CUDA_ASM_PTR "r"
#endif
template<class T> struct ForceGlob;
#define OPENCV_CUDA_DEFINE_FORCE_GLOB(base_type, ptx_type, reg_mod) \
template <> struct ForceGlob<base_type> \
{ \
__device__ __forceinline__ static void Load(const base_type* ptr, int offset, base_type& val) \
{ \
asm("ld.global."#ptx_type" %0, [%1];" : "="#reg_mod(val) : OPENCV_CUDA_ASM_PTR(ptr + offset)); \
} \
};
#define OPENCV_CUDA_DEFINE_FORCE_GLOB_B(base_type, ptx_type) \
template <> struct ForceGlob<base_type> \
{ \
__device__ __forceinline__ static void Load(const base_type* ptr, int offset, base_type& val) \
{ \
asm("ld.global."#ptx_type" %0, [%1];" : "=r"(*reinterpret_cast<uint*>(&val)) : OPENCV_CUDA_ASM_PTR(ptr + offset)); \
} \
};
OPENCV_CUDA_DEFINE_FORCE_GLOB_B(uchar, u8)
OPENCV_CUDA_DEFINE_FORCE_GLOB_B(schar, s8)
OPENCV_CUDA_DEFINE_FORCE_GLOB_B(char, b8)
OPENCV_CUDA_DEFINE_FORCE_GLOB (ushort, u16, h)
OPENCV_CUDA_DEFINE_FORCE_GLOB (short, s16, h)
OPENCV_CUDA_DEFINE_FORCE_GLOB (uint, u32, r)
OPENCV_CUDA_DEFINE_FORCE_GLOB (int, s32, r)
OPENCV_CUDA_DEFINE_FORCE_GLOB (float, f32, f)
OPENCV_CUDA_DEFINE_FORCE_GLOB (double, f64, d)
#undef OPENCV_CUDA_DEFINE_FORCE_GLOB
#undef OPENCV_CUDA_DEFINE_FORCE_GLOB_B
#undef OPENCV_CUDA_ASM_PTR
#endif // __CUDA_ARCH__ >= 200
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_DATAMOV_UTILS_HPP__

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,365 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_REDUCE_DETAIL_HPP__
#define __OPENCV_CUDA_REDUCE_DETAIL_HPP__
#include <thrust/tuple.h>
#include "../warp.hpp"
#include "../warp_shuffle.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace reduce_detail
{
template <typename T> struct GetType;
template <typename T> struct GetType<T*>
{
typedef T type;
};
template <typename T> struct GetType<volatile T*>
{
typedef T type;
};
template <typename T> struct GetType<T&>
{
typedef T type;
};
template <unsigned int I, unsigned int N>
struct For
{
template <class PointerTuple, class ValTuple>
static __device__ void loadToSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get<I>(smem)[tid] = thrust::get<I>(val);
For<I + 1, N>::loadToSmem(smem, val, tid);
}
template <class PointerTuple, class ValTuple>
static __device__ void loadFromSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get<I>(val) = thrust::get<I>(smem)[tid];
For<I + 1, N>::loadFromSmem(smem, val, tid);
}
template <class PointerTuple, class ValTuple, class OpTuple>
static __device__ void merge(const PointerTuple& smem, const ValTuple& val, unsigned int tid, unsigned int delta, const OpTuple& op)
{
typename GetType<typename thrust::tuple_element<I, PointerTuple>::type>::type reg = thrust::get<I>(smem)[tid + delta];
thrust::get<I>(smem)[tid] = thrust::get<I>(val) = thrust::get<I>(op)(thrust::get<I>(val), reg);
For<I + 1, N>::merge(smem, val, tid, delta, op);
}
template <class ValTuple, class OpTuple>
static __device__ void mergeShfl(const ValTuple& val, unsigned int delta, unsigned int width, const OpTuple& op)
{
typename GetType<typename thrust::tuple_element<I, ValTuple>::type>::type reg = shfl_down(thrust::get<I>(val), delta, width);
thrust::get<I>(val) = thrust::get<I>(op)(thrust::get<I>(val), reg);
For<I + 1, N>::mergeShfl(val, delta, width, op);
}
};
template <unsigned int N>
struct For<N, N>
{
template <class PointerTuple, class ValTuple>
static __device__ void loadToSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template <class PointerTuple, class ValTuple>
static __device__ void loadFromSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template <class PointerTuple, class ValTuple, class OpTuple>
static __device__ void merge(const PointerTuple&, const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
template <class ValTuple, class OpTuple>
static __device__ void mergeShfl(const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
};
template <typename T>
__device__ __forceinline__ void loadToSmem(volatile T* smem, T& val, unsigned int tid)
{
smem[tid] = val;
}
template <typename T>
__device__ __forceinline__ void loadFromSmem(volatile T* smem, T& val, unsigned int tid)
{
val = smem[tid];
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9>
__device__ __forceinline__ void loadToSmem(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::loadToSmem(smem, val, tid);
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9>
__device__ __forceinline__ void loadFromSmem(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::loadFromSmem(smem, val, tid);
}
template <typename T, class Op>
__device__ __forceinline__ void merge(volatile T* smem, T& val, unsigned int tid, unsigned int delta, const Op& op)
{
T reg = smem[tid + delta];
smem[tid] = val = op(val, reg);
}
template <typename T, class Op>
__device__ __forceinline__ void mergeShfl(T& val, unsigned int delta, unsigned int width, const Op& op)
{
T reg = shfl_down(val, delta, width);
val = op(val, reg);
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void merge(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid,
unsigned int delta,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::merge(smem, val, tid, delta, op);
}
template <typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void mergeShfl(const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int delta,
unsigned int width,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
For<0, thrust::tuple_size<thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9> >::value>::mergeShfl(val, delta, width, op);
}
template <unsigned int N> struct Generic
{
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
loadToSmem(smem, val, tid);
if (N >= 32)
__syncthreads();
if (N >= 2048)
{
if (tid < 1024)
merge(smem, val, tid, 1024, op);
__syncthreads();
}
if (N >= 1024)
{
if (tid < 512)
merge(smem, val, tid, 512, op);
__syncthreads();
}
if (N >= 512)
{
if (tid < 256)
merge(smem, val, tid, 256, op);
__syncthreads();
}
if (N >= 256)
{
if (tid < 128)
merge(smem, val, tid, 128, op);
__syncthreads();
}
if (N >= 128)
{
if (tid < 64)
merge(smem, val, tid, 64, op);
__syncthreads();
}
if (N >= 64)
{
if (tid < 32)
merge(smem, val, tid, 32, op);
}
if (tid < 16)
{
merge(smem, val, tid, 16, op);
merge(smem, val, tid, 8, op);
merge(smem, val, tid, 4, op);
merge(smem, val, tid, 2, op);
merge(smem, val, tid, 1, op);
}
}
};
template <unsigned int I, typename Pointer, typename Reference, class Op>
struct Unroll
{
static __device__ void loopShfl(Reference val, Op op, unsigned int N)
{
mergeShfl(val, I, N, op);
Unroll<I / 2, Pointer, Reference, Op>::loopShfl(val, op, N);
}
static __device__ void loop(Pointer smem, Reference val, unsigned int tid, Op op)
{
merge(smem, val, tid, I, op);
Unroll<I / 2, Pointer, Reference, Op>::loop(smem, val, tid, op);
}
};
template <typename Pointer, typename Reference, class Op>
struct Unroll<0, Pointer, Reference, Op>
{
static __device__ void loopShfl(Reference, Op, unsigned int)
{
}
static __device__ void loop(Pointer, Reference, unsigned int, Op)
{
}
};
template <unsigned int N> struct WarpOptimized
{
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
#if __CUDA_ARCH__ >= 300
(void) smem;
(void) tid;
Unroll<N / 2, Pointer, Reference, Op>::loopShfl(val, op, N);
#else
loadToSmem(smem, val, tid);
if (tid < N / 2)
Unroll<N / 2, Pointer, Reference, Op>::loop(smem, val, tid, op);
#endif
}
};
template <unsigned int N> struct GenericOptimized32
{
enum { M = N / 32 };
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
const unsigned int laneId = Warp::laneId();
#if __CUDA_ARCH__ >= 300
Unroll<16, Pointer, Reference, Op>::loopShfl(val, op, warpSize);
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#else
loadToSmem(smem, val, tid);
if (laneId < 16)
Unroll<16, Pointer, Reference, Op>::loop(smem, val, tid, op);
__syncthreads();
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#endif
__syncthreads();
loadFromSmem(smem, val, tid);
if (tid < 32)
{
#if __CUDA_ARCH__ >= 300
Unroll<M / 2, Pointer, Reference, Op>::loopShfl(val, op, M);
#else
Unroll<M / 2, Pointer, Reference, Op>::loop(smem, val, tid, op);
#endif
}
}
};
template <bool val, class T1, class T2> struct StaticIf;
template <class T1, class T2> struct StaticIf<true, T1, T2>
{
typedef T1 type;
};
template <class T1, class T2> struct StaticIf<false, T1, T2>
{
typedef T2 type;
};
template <unsigned int N> struct IsPowerOf2
{
enum { value = ((N != 0) && !(N & (N - 1))) };
};
template <unsigned int N> struct Dispatcher
{
typedef typename StaticIf<
(N <= 32) && IsPowerOf2<N>::value,
WarpOptimized<N>,
typename StaticIf<
(N <= 1024) && IsPowerOf2<N>::value,
GenericOptimized32<N>,
Generic<N>
>::type
>::type reductor;
};
}
}}}
//! @endcond
#endif // __OPENCV_CUDA_REDUCE_DETAIL_HPP__

View File

@ -0,0 +1,502 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP__
#define __OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP__
#include <thrust/tuple.h>
#include "../warp.hpp"
#include "../warp_shuffle.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace reduce_key_val_detail
{
template <typename T> struct GetType;
template <typename T> struct GetType<T*>
{
typedef T type;
};
template <typename T> struct GetType<volatile T*>
{
typedef T type;
};
template <typename T> struct GetType<T&>
{
typedef T type;
};
template <unsigned int I, unsigned int N>
struct For
{
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadToSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid)
{
thrust::get<I>(smem)[tid] = thrust::get<I>(data);
For<I + 1, N>::loadToSmem(smem, data, tid);
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadFromSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid)
{
thrust::get<I>(data) = thrust::get<I>(smem)[tid];
For<I + 1, N>::loadFromSmem(smem, data, tid);
}
template <class ReferenceTuple>
static __device__ void copyShfl(const ReferenceTuple& val, unsigned int delta, int width)
{
thrust::get<I>(val) = shfl_down(thrust::get<I>(val), delta, width);
For<I + 1, N>::copyShfl(val, delta, width);
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void copy(const PointerTuple& svals, const ReferenceTuple& val, unsigned int tid, unsigned int delta)
{
thrust::get<I>(svals)[tid] = thrust::get<I>(val) = thrust::get<I>(svals)[tid + delta];
For<I + 1, N>::copy(svals, val, tid, delta);
}
template <class KeyReferenceTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void mergeShfl(const KeyReferenceTuple& key, const ValReferenceTuple& val, const CmpTuple& cmp, unsigned int delta, int width)
{
typename GetType<typename thrust::tuple_element<I, KeyReferenceTuple>::type>::type reg = shfl_down(thrust::get<I>(key), delta, width);
if (thrust::get<I>(cmp)(reg, thrust::get<I>(key)))
{
thrust::get<I>(key) = reg;
thrust::get<I>(val) = shfl_down(thrust::get<I>(val), delta, width);
}
For<I + 1, N>::mergeShfl(key, val, cmp, delta, width);
}
template <class KeyPointerTuple, class KeyReferenceTuple, class ValPointerTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void merge(const KeyPointerTuple& skeys, const KeyReferenceTuple& key,
const ValPointerTuple& svals, const ValReferenceTuple& val,
const CmpTuple& cmp,
unsigned int tid, unsigned int delta)
{
typename GetType<typename thrust::tuple_element<I, KeyPointerTuple>::type>::type reg = thrust::get<I>(skeys)[tid + delta];
if (thrust::get<I>(cmp)(reg, thrust::get<I>(key)))
{
thrust::get<I>(skeys)[tid] = thrust::get<I>(key) = reg;
thrust::get<I>(svals)[tid] = thrust::get<I>(val) = thrust::get<I>(svals)[tid + delta];
}
For<I + 1, N>::merge(skeys, key, svals, val, cmp, tid, delta);
}
};
template <unsigned int N>
struct For<N, N>
{
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadToSmem(const PointerTuple&, const ReferenceTuple&, unsigned int)
{
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadFromSmem(const PointerTuple&, const ReferenceTuple&, unsigned int)
{
}
template <class ReferenceTuple>
static __device__ void copyShfl(const ReferenceTuple&, unsigned int, int)
{
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void copy(const PointerTuple&, const ReferenceTuple&, unsigned int, unsigned int)
{
}
template <class KeyReferenceTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void mergeShfl(const KeyReferenceTuple&, const ValReferenceTuple&, const CmpTuple&, unsigned int, int)
{
}
template <class KeyPointerTuple, class KeyReferenceTuple, class ValPointerTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void merge(const KeyPointerTuple&, const KeyReferenceTuple&,
const ValPointerTuple&, const ValReferenceTuple&,
const CmpTuple&,
unsigned int, unsigned int)
{
}
};
//////////////////////////////////////////////////////
// loadToSmem
template <typename T>
__device__ __forceinline__ void loadToSmem(volatile T* smem, T& data, unsigned int tid)
{
smem[tid] = data;
}
template <typename T>
__device__ __forceinline__ void loadFromSmem(volatile T* smem, T& data, unsigned int tid)
{
data = smem[tid];
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void loadToSmem(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& smem,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& data,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::loadToSmem(smem, data, tid);
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void loadFromSmem(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& smem,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& data,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::loadFromSmem(smem, data, tid);
}
//////////////////////////////////////////////////////
// copyVals
template <typename V>
__device__ __forceinline__ void copyValsShfl(V& val, unsigned int delta, int width)
{
val = shfl_down(val, delta, width);
}
template <typename V>
__device__ __forceinline__ void copyVals(volatile V* svals, V& val, unsigned int tid, unsigned int delta)
{
svals[tid] = val = svals[tid + delta];
}
template <typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void copyValsShfl(const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int delta,
int width)
{
For<0, thrust::tuple_size<thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9> >::value>::copyShfl(val, delta, width);
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void copyVals(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid, unsigned int delta)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::copy(svals, val, tid, delta);
}
//////////////////////////////////////////////////////
// merge
template <typename K, typename V, class Cmp>
__device__ __forceinline__ void mergeShfl(K& key, V& val, const Cmp& cmp, unsigned int delta, int width)
{
K reg = shfl_down(key, delta, width);
if (cmp(reg, key))
{
key = reg;
copyValsShfl(val, delta, width);
}
}
template <typename K, typename V, class Cmp>
__device__ __forceinline__ void merge(volatile K* skeys, K& key, volatile V* svals, V& val, const Cmp& cmp, unsigned int tid, unsigned int delta)
{
K reg = skeys[tid + delta];
if (cmp(reg, key))
{
skeys[tid] = key = reg;
copyVals(svals, val, tid, delta);
}
}
template <typename K,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void mergeShfl(K& key,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const Cmp& cmp,
unsigned int delta, int width)
{
K reg = shfl_down(key, delta, width);
if (cmp(reg, key))
{
key = reg;
copyValsShfl(val, delta, width);
}
}
template <typename K,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void merge(volatile K* skeys, K& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const Cmp& cmp, unsigned int tid, unsigned int delta)
{
K reg = skeys[tid + delta];
if (cmp(reg, key))
{
skeys[tid] = key = reg;
copyVals(svals, val, tid, delta);
}
}
template <typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void mergeShfl(const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp,
unsigned int delta, int width)
{
For<0, thrust::tuple_size<thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9> >::value>::mergeShfl(key, val, cmp, delta, width);
}
template <typename KP0, typename KP1, typename KP2, typename KP3, typename KP4, typename KP5, typename KP6, typename KP7, typename KP8, typename KP9,
typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void merge(const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>& skeys,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp,
unsigned int tid, unsigned int delta)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::merge(skeys, key, svals, val, cmp, tid, delta);
}
//////////////////////////////////////////////////////
// Generic
template <unsigned int N> struct Generic
{
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
loadToSmem(skeys, key, tid);
loadValsToSmem(svals, val, tid);
if (N >= 32)
__syncthreads();
if (N >= 2048)
{
if (tid < 1024)
merge(skeys, key, svals, val, cmp, tid, 1024);
__syncthreads();
}
if (N >= 1024)
{
if (tid < 512)
merge(skeys, key, svals, val, cmp, tid, 512);
__syncthreads();
}
if (N >= 512)
{
if (tid < 256)
merge(skeys, key, svals, val, cmp, tid, 256);
__syncthreads();
}
if (N >= 256)
{
if (tid < 128)
merge(skeys, key, svals, val, cmp, tid, 128);
__syncthreads();
}
if (N >= 128)
{
if (tid < 64)
merge(skeys, key, svals, val, cmp, tid, 64);
__syncthreads();
}
if (N >= 64)
{
if (tid < 32)
merge(skeys, key, svals, val, cmp, tid, 32);
}
if (tid < 16)
{
merge(skeys, key, svals, val, cmp, tid, 16);
merge(skeys, key, svals, val, cmp, tid, 8);
merge(skeys, key, svals, val, cmp, tid, 4);
merge(skeys, key, svals, val, cmp, tid, 2);
merge(skeys, key, svals, val, cmp, tid, 1);
}
}
};
template <unsigned int I, class KP, class KR, class VP, class VR, class Cmp>
struct Unroll
{
static __device__ void loopShfl(KR key, VR val, Cmp cmp, unsigned int N)
{
mergeShfl(key, val, cmp, I, N);
Unroll<I / 2, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, N);
}
static __device__ void loop(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
merge(skeys, key, svals, val, cmp, tid, I);
Unroll<I / 2, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
}
};
template <class KP, class KR, class VP, class VR, class Cmp>
struct Unroll<0, KP, KR, VP, VR, Cmp>
{
static __device__ void loopShfl(KR, VR, Cmp, unsigned int)
{
}
static __device__ void loop(KP, KR, VP, VR, unsigned int, Cmp)
{
}
};
template <unsigned int N> struct WarpOptimized
{
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
#if 0 // __CUDA_ARCH__ >= 300
(void) skeys;
(void) svals;
(void) tid;
Unroll<N / 2, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, N);
#else
loadToSmem(skeys, key, tid);
loadToSmem(svals, val, tid);
if (tid < N / 2)
Unroll<N / 2, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
#endif
}
};
template <unsigned int N> struct GenericOptimized32
{
enum { M = N / 32 };
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
const unsigned int laneId = Warp::laneId();
#if 0 // __CUDA_ARCH__ >= 300
Unroll<16, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, warpSize);
if (laneId == 0)
{
loadToSmem(skeys, key, tid / 32);
loadToSmem(svals, val, tid / 32);
}
#else
loadToSmem(skeys, key, tid);
loadToSmem(svals, val, tid);
if (laneId < 16)
Unroll<16, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
__syncthreads();
if (laneId == 0)
{
loadToSmem(skeys, key, tid / 32);
loadToSmem(svals, val, tid / 32);
}
#endif
__syncthreads();
loadFromSmem(skeys, key, tid);
if (tid < 32)
{
#if 0 // __CUDA_ARCH__ >= 300
loadFromSmem(svals, val, tid);
Unroll<M / 2, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, M);
#else
Unroll<M / 2, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
#endif
}
}
};
template <bool val, class T1, class T2> struct StaticIf;
template <class T1, class T2> struct StaticIf<true, T1, T2>
{
typedef T1 type;
};
template <class T1, class T2> struct StaticIf<false, T1, T2>
{
typedef T2 type;
};
template <unsigned int N> struct IsPowerOf2
{
enum { value = ((N != 0) && !(N & (N - 1))) };
};
template <unsigned int N> struct Dispatcher
{
typedef typename StaticIf<
(N <= 32) && IsPowerOf2<N>::value,
WarpOptimized<N>,
typename StaticIf<
(N <= 1024) && IsPowerOf2<N>::value,
GenericOptimized32<N>,
Generic<N>
>::type
>::type reductor;
};
}
}}}
//! @endcond
#endif // __OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP__

View File

@ -0,0 +1,399 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_TRANSFORM_DETAIL_HPP__
#define __OPENCV_CUDA_TRANSFORM_DETAIL_HPP__
#include "../common.hpp"
#include "../vec_traits.hpp"
#include "../functional.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace transform_detail
{
//! Read Write Traits
template <typename T, typename D, int shift> struct UnaryReadWriteTraits
{
typedef typename TypeVec<T, shift>::vec_type read_type;
typedef typename TypeVec<D, shift>::vec_type write_type;
};
template <typename T1, typename T2, typename D, int shift> struct BinaryReadWriteTraits
{
typedef typename TypeVec<T1, shift>::vec_type read_type1;
typedef typename TypeVec<T2, shift>::vec_type read_type2;
typedef typename TypeVec<D, shift>::vec_type write_type;
};
//! Transform kernels
template <int shift> struct OpUnroller;
template <> struct OpUnroller<1>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
}
};
template <> struct OpUnroller<2>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
}
};
template <> struct OpUnroller<3>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
}
};
template <> struct OpUnroller<4>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
if (mask(y, x_shifted + 3))
dst.w = op(src.w);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
if (mask(y, x_shifted + 3))
dst.w = op(src1.w, src2.w);
}
};
template <> struct OpUnroller<8>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.a0 = op(src.a0);
if (mask(y, x_shifted + 1))
dst.a1 = op(src.a1);
if (mask(y, x_shifted + 2))
dst.a2 = op(src.a2);
if (mask(y, x_shifted + 3))
dst.a3 = op(src.a3);
if (mask(y, x_shifted + 4))
dst.a4 = op(src.a4);
if (mask(y, x_shifted + 5))
dst.a5 = op(src.a5);
if (mask(y, x_shifted + 6))
dst.a6 = op(src.a6);
if (mask(y, x_shifted + 7))
dst.a7 = op(src.a7);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.a0 = op(src1.a0, src2.a0);
if (mask(y, x_shifted + 1))
dst.a1 = op(src1.a1, src2.a1);
if (mask(y, x_shifted + 2))
dst.a2 = op(src1.a2, src2.a2);
if (mask(y, x_shifted + 3))
dst.a3 = op(src1.a3, src2.a3);
if (mask(y, x_shifted + 4))
dst.a4 = op(src1.a4, src2.a4);
if (mask(y, x_shifted + 5))
dst.a5 = op(src1.a5, src2.a5);
if (mask(y, x_shifted + 6))
dst.a6 = op(src1.a6, src2.a6);
if (mask(y, x_shifted + 7))
dst.a7 = op(src1.a7, src2.a7);
}
};
template <typename T, typename D, typename UnOp, typename Mask>
static __global__ void transformSmart(const PtrStepSz<T> src_, PtrStep<D> dst_, const Mask mask, const UnOp op)
{
typedef TransformFunctorTraits<UnOp> ft;
typedef typename UnaryReadWriteTraits<T, D, ft::smart_shift>::read_type read_type;
typedef typename UnaryReadWriteTraits<T, D, ft::smart_shift>::write_type write_type;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * ft::smart_shift;
if (y < src_.rows)
{
const T* src = src_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + ft::smart_shift - 1 < src_.cols)
{
const read_type src_n_el = ((const read_type*)src)[x];
write_type dst_n_el = ((const write_type*)dst)[x];
OpUnroller<ft::smart_shift>::unroll(src_n_el, dst_n_el, mask, op, x_shifted, y);
((write_type*)dst)[x] = dst_n_el;
}
else
{
for (int real_x = x_shifted; real_x < src_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src[real_x]);
}
}
}
}
template <typename T, typename D, typename UnOp, typename Mask>
__global__ static void transformSimple(const PtrStepSz<T> src, PtrStep<D> dst, const Mask mask, const UnOp op)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < src.cols && y < src.rows && mask(y, x))
{
dst.ptr(y)[x] = op(src.ptr(y)[x]);
}
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __global__ void transformSmart(const PtrStepSz<T1> src1_, const PtrStep<T2> src2_, PtrStep<D> dst_,
const Mask mask, const BinOp op)
{
typedef TransformFunctorTraits<BinOp> ft;
typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::read_type1 read_type1;
typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::read_type2 read_type2;
typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::write_type write_type;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * ft::smart_shift;
if (y < src1_.rows)
{
const T1* src1 = src1_.ptr(y);
const T2* src2 = src2_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + ft::smart_shift - 1 < src1_.cols)
{
const read_type1 src1_n_el = ((const read_type1*)src1)[x];
const read_type2 src2_n_el = ((const read_type2*)src2)[x];
write_type dst_n_el = ((const write_type*)dst)[x];
OpUnroller<ft::smart_shift>::unroll(src1_n_el, src2_n_el, dst_n_el, mask, op, x_shifted, y);
((write_type*)dst)[x] = dst_n_el;
}
else
{
for (int real_x = x_shifted; real_x < src1_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src1[real_x], src2[real_x]);
}
}
}
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __global__ void transformSimple(const PtrStepSz<T1> src1, const PtrStep<T2> src2, PtrStep<D> dst,
const Mask mask, const BinOp op)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < src1.cols && y < src1.rows && mask(y, x))
{
const T1 src1_data = src1.ptr(y)[x];
const T2 src2_data = src2.ptr(y)[x];
dst.ptr(y)[x] = op(src1_data, src2_data);
}
}
template <bool UseSmart> struct TransformDispatcher;
template<> struct TransformDispatcher<false>
{
template <typename T, typename D, typename UnOp, typename Mask>
static void call(PtrStepSz<T> src, PtrStepSz<D> dst, UnOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<UnOp> ft;
const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1);
const dim3 grid(divUp(src.cols, threads.x), divUp(src.rows, threads.y), 1);
transformSimple<T, D><<<grid, threads, 0, stream>>>(src, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static void call(PtrStepSz<T1> src1, PtrStepSz<T2> src2, PtrStepSz<D> dst, BinOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<BinOp> ft;
const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1);
const dim3 grid(divUp(src1.cols, threads.x), divUp(src1.rows, threads.y), 1);
transformSimple<T1, T2, D><<<grid, threads, 0, stream>>>(src1, src2, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<> struct TransformDispatcher<true>
{
template <typename T, typename D, typename UnOp, typename Mask>
static void call(PtrStepSz<T> src, PtrStepSz<D> dst, UnOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<UnOp> ft;
CV_StaticAssert(ft::smart_shift != 1, "");
if (!isAligned(src.data, ft::smart_shift * sizeof(T)) || !isAligned(src.step, ft::smart_shift * sizeof(T)) ||
!isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D)))
{
TransformDispatcher<false>::call(src, dst, op, mask, stream);
return;
}
const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1);
const dim3 grid(divUp(src.cols, threads.x * ft::smart_shift), divUp(src.rows, threads.y), 1);
transformSmart<T, D><<<grid, threads, 0, stream>>>(src, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static void call(PtrStepSz<T1> src1, PtrStepSz<T2> src2, PtrStepSz<D> dst, BinOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<BinOp> ft;
CV_StaticAssert(ft::smart_shift != 1, "");
if (!isAligned(src1.data, ft::smart_shift * sizeof(T1)) || !isAligned(src1.step, ft::smart_shift * sizeof(T1)) ||
!isAligned(src2.data, ft::smart_shift * sizeof(T2)) || !isAligned(src2.step, ft::smart_shift * sizeof(T2)) ||
!isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D)))
{
TransformDispatcher<false>::call(src1, src2, dst, op, mask, stream);
return;
}
const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1);
const dim3 grid(divUp(src1.cols, threads.x * ft::smart_shift), divUp(src1.rows, threads.y), 1);
transformSmart<T1, T2, D><<<grid, threads, 0, stream>>>(src1, src2, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
} // namespace transform_detail
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_TRANSFORM_DETAIL_HPP__

View File

@ -0,0 +1,191 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP__
#define __OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP__
#include "../common.hpp"
#include "../vec_traits.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace type_traits_detail
{
template <bool, typename T1, typename T2> struct Select { typedef T1 type; };
template <typename T1, typename T2> struct Select<false, T1, T2> { typedef T2 type; };
template <typename T> struct IsSignedIntergral { enum {value = 0}; };
template <> struct IsSignedIntergral<schar> { enum {value = 1}; };
template <> struct IsSignedIntergral<char1> { enum {value = 1}; };
template <> struct IsSignedIntergral<short> { enum {value = 1}; };
template <> struct IsSignedIntergral<short1> { enum {value = 1}; };
template <> struct IsSignedIntergral<int> { enum {value = 1}; };
template <> struct IsSignedIntergral<int1> { enum {value = 1}; };
template <typename T> struct IsUnsignedIntegral { enum {value = 0}; };
template <> struct IsUnsignedIntegral<uchar> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<uchar1> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<ushort> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<ushort1> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<uint> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<uint1> { enum {value = 1}; };
template <typename T> struct IsIntegral { enum {value = IsSignedIntergral<T>::value || IsUnsignedIntegral<T>::value}; };
template <> struct IsIntegral<char> { enum {value = 1}; };
template <> struct IsIntegral<bool> { enum {value = 1}; };
template <typename T> struct IsFloat { enum {value = 0}; };
template <> struct IsFloat<float> { enum {value = 1}; };
template <> struct IsFloat<double> { enum {value = 1}; };
template <typename T> struct IsVec { enum {value = 0}; };
template <> struct IsVec<uchar1> { enum {value = 1}; };
template <> struct IsVec<uchar2> { enum {value = 1}; };
template <> struct IsVec<uchar3> { enum {value = 1}; };
template <> struct IsVec<uchar4> { enum {value = 1}; };
template <> struct IsVec<uchar8> { enum {value = 1}; };
template <> struct IsVec<char1> { enum {value = 1}; };
template <> struct IsVec<char2> { enum {value = 1}; };
template <> struct IsVec<char3> { enum {value = 1}; };
template <> struct IsVec<char4> { enum {value = 1}; };
template <> struct IsVec<char8> { enum {value = 1}; };
template <> struct IsVec<ushort1> { enum {value = 1}; };
template <> struct IsVec<ushort2> { enum {value = 1}; };
template <> struct IsVec<ushort3> { enum {value = 1}; };
template <> struct IsVec<ushort4> { enum {value = 1}; };
template <> struct IsVec<ushort8> { enum {value = 1}; };
template <> struct IsVec<short1> { enum {value = 1}; };
template <> struct IsVec<short2> { enum {value = 1}; };
template <> struct IsVec<short3> { enum {value = 1}; };
template <> struct IsVec<short4> { enum {value = 1}; };
template <> struct IsVec<short8> { enum {value = 1}; };
template <> struct IsVec<uint1> { enum {value = 1}; };
template <> struct IsVec<uint2> { enum {value = 1}; };
template <> struct IsVec<uint3> { enum {value = 1}; };
template <> struct IsVec<uint4> { enum {value = 1}; };
template <> struct IsVec<uint8> { enum {value = 1}; };
template <> struct IsVec<int1> { enum {value = 1}; };
template <> struct IsVec<int2> { enum {value = 1}; };
template <> struct IsVec<int3> { enum {value = 1}; };
template <> struct IsVec<int4> { enum {value = 1}; };
template <> struct IsVec<int8> { enum {value = 1}; };
template <> struct IsVec<float1> { enum {value = 1}; };
template <> struct IsVec<float2> { enum {value = 1}; };
template <> struct IsVec<float3> { enum {value = 1}; };
template <> struct IsVec<float4> { enum {value = 1}; };
template <> struct IsVec<float8> { enum {value = 1}; };
template <> struct IsVec<double1> { enum {value = 1}; };
template <> struct IsVec<double2> { enum {value = 1}; };
template <> struct IsVec<double3> { enum {value = 1}; };
template <> struct IsVec<double4> { enum {value = 1}; };
template <> struct IsVec<double8> { enum {value = 1}; };
template <class U> struct AddParameterType { typedef const U& type; };
template <class U> struct AddParameterType<U&> { typedef U& type; };
template <> struct AddParameterType<void> { typedef void type; };
template <class U> struct ReferenceTraits
{
enum { value = false };
typedef U type;
};
template <class U> struct ReferenceTraits<U&>
{
enum { value = true };
typedef U type;
};
template <class U> struct PointerTraits
{
enum { value = false };
typedef void type;
};
template <class U> struct PointerTraits<U*>
{
enum { value = true };
typedef U type;
};
template <class U> struct PointerTraits<U*&>
{
enum { value = true };
typedef U type;
};
template <class U> struct UnConst
{
typedef U type;
enum { value = 0 };
};
template <class U> struct UnConst<const U>
{
typedef U type;
enum { value = 1 };
};
template <class U> struct UnConst<const U&>
{
typedef U& type;
enum { value = 1 };
};
template <class U> struct UnVolatile
{
typedef U type;
enum { value = 0 };
};
template <class U> struct UnVolatile<volatile U>
{
typedef U type;
enum { value = 1 };
};
template <class U> struct UnVolatile<volatile U&>
{
typedef U& type;
enum { value = 1 };
};
} // namespace type_traits_detail
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP__

View File

@ -0,0 +1,121 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP__
#define __OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP__
#include "../datamov_utils.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace vec_distance_detail
{
template <int THREAD_DIM, int N> struct UnrollVecDiffCached
{
template <typename Dist, typename T1, typename T2>
static __device__ void calcCheck(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int ind)
{
if (ind < len)
{
T1 val1 = *vecCached++;
T2 val2;
ForceGlob<T2>::Load(vecGlob, ind, val2);
dist.reduceIter(val1, val2);
UnrollVecDiffCached<THREAD_DIM, N - 1>::calcCheck(vecCached, vecGlob, len, dist, ind + THREAD_DIM);
}
}
template <typename Dist, typename T1, typename T2>
static __device__ void calcWithoutCheck(const T1* vecCached, const T2* vecGlob, Dist& dist)
{
T1 val1 = *vecCached++;
T2 val2;
ForceGlob<T2>::Load(vecGlob, 0, val2);
vecGlob += THREAD_DIM;
dist.reduceIter(val1, val2);
UnrollVecDiffCached<THREAD_DIM, N - 1>::calcWithoutCheck(vecCached, vecGlob, dist);
}
};
template <int THREAD_DIM> struct UnrollVecDiffCached<THREAD_DIM, 0>
{
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calcCheck(const T1*, const T2*, int, Dist&, int)
{
}
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calcWithoutCheck(const T1*, const T2*, Dist&)
{
}
};
template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN> struct VecDiffCachedCalculator;
template <int THREAD_DIM, int MAX_LEN> struct VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, false>
{
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calc(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int tid)
{
UnrollVecDiffCached<THREAD_DIM, MAX_LEN / THREAD_DIM>::calcCheck(vecCached, vecGlob, len, dist, tid);
}
};
template <int THREAD_DIM, int MAX_LEN> struct VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, true>
{
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calc(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int tid)
{
UnrollVecDiffCached<THREAD_DIM, MAX_LEN / THREAD_DIM>::calcWithoutCheck(vecCached, vecGlob + tid, dist);
}
};
} // namespace vec_distance_detail
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP__

View File

@ -0,0 +1,88 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_DYNAMIC_SMEM_HPP__
#define __OPENCV_CUDA_DYNAMIC_SMEM_HPP__
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template<class T> struct DynamicSharedMem
{
__device__ __forceinline__ operator T*()
{
extern __shared__ int __smem[];
return (T*)__smem;
}
__device__ __forceinline__ operator const T*() const
{
extern __shared__ int __smem[];
return (T*)__smem;
}
};
// specialize for double to avoid unaligned memory access compile errors
template<> struct DynamicSharedMem<double>
{
__device__ __forceinline__ operator double*()
{
extern __shared__ double __smem_d[];
return (double*)__smem_d;
}
__device__ __forceinline__ operator const double*() const
{
extern __shared__ double __smem_d[];
return (double*)__smem_d;
}
};
}}}
//! @endcond
#endif // __OPENCV_CUDA_DYNAMIC_SMEM_HPP__

View File

@ -0,0 +1,269 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_EMULATION_HPP_
#define OPENCV_CUDA_EMULATION_HPP_
#include "common.hpp"
#include "warp_reduce.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
struct Emulation
{
static __device__ __forceinline__ int syncthreadsOr(int pred)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 200)
// just campilation stab
return 0;
#else
return __syncthreads_or(pred);
#endif
}
template<int CTA_SIZE>
static __forceinline__ __device__ int Ballot(int predicate)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ >= 200)
return __ballot(predicate);
#else
__shared__ volatile int cta_buffer[CTA_SIZE];
int tid = threadIdx.x;
cta_buffer[tid] = predicate ? (1 << (tid & 31)) : 0;
return warp_reduce(cta_buffer);
#endif
}
struct smem
{
enum { TAG_MASK = (1U << ( (sizeof(unsigned int) << 3) - 5U)) - 1U };
template<typename T>
static __device__ __forceinline__ T atomicInc(T* address, T val)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
T count;
unsigned int tag = threadIdx.x << ( (sizeof(unsigned int) << 3) - 5U);
do
{
count = *address & TAG_MASK;
count = tag | (count + 1);
*address = count;
} while (*address != count);
return (count & TAG_MASK) - 1;
#else
return ::atomicInc(address, val);
#endif
}
template<typename T>
static __device__ __forceinline__ T atomicAdd(T* address, T val)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
T count;
unsigned int tag = threadIdx.x << ( (sizeof(unsigned int) << 3) - 5U);
do
{
count = *address & TAG_MASK;
count = tag | (count + val);
*address = count;
} while (*address != count);
return (count & TAG_MASK) - val;
#else
return ::atomicAdd(address, val);
#endif
}
template<typename T>
static __device__ __forceinline__ T atomicMin(T* address, T val)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
T count = ::min(*address, val);
do
{
*address = count;
} while (*address > count);
return count;
#else
return ::atomicMin(address, val);
#endif
}
}; // struct cmem
struct glob
{
static __device__ __forceinline__ int atomicAdd(int* address, int val)
{
return ::atomicAdd(address, val);
}
static __device__ __forceinline__ unsigned int atomicAdd(unsigned int* address, unsigned int val)
{
return ::atomicAdd(address, val);
}
static __device__ __forceinline__ float atomicAdd(float* address, float val)
{
#if __CUDA_ARCH__ >= 200
return ::atomicAdd(address, val);
#else
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(val + __int_as_float(assumed)));
} while (assumed != old);
return __int_as_float(old);
#endif
}
static __device__ __forceinline__ double atomicAdd(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(val + __longlong_as_double(assumed)));
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
return 0.0;
#endif
}
static __device__ __forceinline__ int atomicMin(int* address, int val)
{
return ::atomicMin(address, val);
}
static __device__ __forceinline__ float atomicMin(float* address, float val)
{
#if __CUDA_ARCH__ >= 120
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(::fminf(val, __int_as_float(assumed))));
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
return 0.0f;
#endif
}
static __device__ __forceinline__ double atomicMin(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(::fmin(val, __longlong_as_double(assumed))));
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
return 0.0;
#endif
}
static __device__ __forceinline__ int atomicMax(int* address, int val)
{
return ::atomicMax(address, val);
}
static __device__ __forceinline__ float atomicMax(float* address, float val)
{
#if __CUDA_ARCH__ >= 120
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(::fmaxf(val, __int_as_float(assumed))));
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
return 0.0f;
#endif
}
static __device__ __forceinline__ double atomicMax(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(::fmax(val, __longlong_as_double(assumed))));
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
return 0.0;
#endif
}
};
}; //struct Emulation
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif /* OPENCV_CUDA_EMULATION_HPP_ */

View File

@ -0,0 +1,286 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_FILTERS_HPP__
#define __OPENCV_CUDA_FILTERS_HPP__
#include "saturate_cast.hpp"
#include "vec_traits.hpp"
#include "vec_math.hpp"
#include "type_traits.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <typename Ptr2D> struct PointFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ PointFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
(void)fx;
(void)fy;
}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
return src(__float2int_rz(y), __float2int_rz(x));
}
Ptr2D src;
};
template <typename Ptr2D> struct LinearFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ LinearFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
(void)fx;
(void)fy;
}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
work_type out = VecTraits<work_type>::all(0);
const int x1 = __float2int_rd(x);
const int y1 = __float2int_rd(y);
const int x2 = x1 + 1;
const int y2 = y1 + 1;
elem_type src_reg = src(y1, x1);
out = out + src_reg * ((x2 - x) * (y2 - y));
src_reg = src(y1, x2);
out = out + src_reg * ((x - x1) * (y2 - y));
src_reg = src(y2, x1);
out = out + src_reg * ((x2 - x) * (y - y1));
src_reg = src(y2, x2);
out = out + src_reg * ((x - x1) * (y - y1));
return saturate_cast<elem_type>(out);
}
Ptr2D src;
};
template <typename Ptr2D> struct CubicFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
explicit __host__ __device__ __forceinline__ CubicFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
(void)fx;
(void)fy;
}
static __device__ __forceinline__ float bicubicCoeff(float x_)
{
float x = fabsf(x_);
if (x <= 1.0f)
{
return x * x * (1.5f * x - 2.5f) + 1.0f;
}
else if (x < 2.0f)
{
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
}
else
{
return 0.0f;
}
}
__device__ elem_type operator ()(float y, float x) const
{
const float xmin = ::ceilf(x - 2.0f);
const float xmax = ::floorf(x + 2.0f);
const float ymin = ::ceilf(y - 2.0f);
const float ymax = ::floorf(y + 2.0f);
work_type sum = VecTraits<work_type>::all(0);
float wsum = 0.0f;
for (float cy = ymin; cy <= ymax; cy += 1.0f)
{
for (float cx = xmin; cx <= xmax; cx += 1.0f)
{
const float w = bicubicCoeff(x - cx) * bicubicCoeff(y - cy);
sum = sum + w * src(__float2int_rd(cy), __float2int_rd(cx));
wsum += w;
}
}
work_type res = (!wsum)? VecTraits<work_type>::all(0) : sum / wsum;
return saturate_cast<elem_type>(res);
}
Ptr2D src;
};
// for integer scaling
template <typename Ptr2D> struct IntegerAreaFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ IntegerAreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_)
: src(src_), scale_x(scale_x_), scale_y(scale_y_), scale(1.f / (scale_x * scale_y)) {}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
float fsx1 = x * scale_x;
float fsx2 = fsx1 + scale_x;
int sx1 = __float2int_ru(fsx1);
int sx2 = __float2int_rd(fsx2);
float fsy1 = y * scale_y;
float fsy2 = fsy1 + scale_y;
int sy1 = __float2int_ru(fsy1);
int sy2 = __float2int_rd(fsy2);
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
work_type out = VecTraits<work_type>::all(0.f);
for(int dy = sy1; dy < sy2; ++dy)
for(int dx = sx1; dx < sx2; ++dx)
{
out = out + src(dy, dx) * scale;
}
return saturate_cast<elem_type>(out);
}
Ptr2D src;
float scale_x, scale_y ,scale;
};
template <typename Ptr2D> struct AreaFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ AreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_)
: src(src_), scale_x(scale_x_), scale_y(scale_y_){}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
float fsx1 = x * scale_x;
float fsx2 = fsx1 + scale_x;
int sx1 = __float2int_ru(fsx1);
int sx2 = __float2int_rd(fsx2);
float fsy1 = y * scale_y;
float fsy2 = fsy1 + scale_y;
int sy1 = __float2int_ru(fsy1);
int sy2 = __float2int_rd(fsy2);
float scale = 1.f / (fminf(scale_x, src.width - fsx1) * fminf(scale_y, src.height - fsy1));
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
work_type out = VecTraits<work_type>::all(0.f);
for (int dy = sy1; dy < sy2; ++dy)
{
for (int dx = sx1; dx < sx2; ++dx)
out = out + src(dy, dx) * scale;
if (sx1 > fsx1)
out = out + src(dy, (sx1 -1) ) * ((sx1 - fsx1) * scale);
if (sx2 < fsx2)
out = out + src(dy, sx2) * ((fsx2 -sx2) * scale);
}
if (sy1 > fsy1)
for (int dx = sx1; dx < sx2; ++dx)
out = out + src( (sy1 - 1) , dx) * ((sy1 -fsy1) * scale);
if (sy2 < fsy2)
for (int dx = sx1; dx < sx2; ++dx)
out = out + src(sy2, dx) * ((fsy2 -sy2) * scale);
if ((sy1 > fsy1) && (sx1 > fsx1))
out = out + src( (sy1 - 1) , (sx1 - 1)) * ((sy1 -fsy1) * (sx1 -fsx1) * scale);
if ((sy1 > fsy1) && (sx2 < fsx2))
out = out + src( (sy1 - 1) , sx2) * ((sy1 -fsy1) * (fsx2 -sx2) * scale);
if ((sy2 < fsy2) && (sx2 < fsx2))
out = out + src(sy2, sx2) * ((fsy2 -sy2) * (fsx2 -sx2) * scale);
if ((sy2 < fsy2) && (sx1 > fsx1))
out = out + src(sy2, (sx1 - 1)) * ((fsy2 -sy2) * (sx1 -fsx1) * scale);
return saturate_cast<elem_type>(out);
}
Ptr2D src;
float scale_x, scale_y;
int width, haight;
};
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_FILTERS_HPP__

View File

@ -0,0 +1,79 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP_
#define __OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP_
#include <cstdio>
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template<class Func>
void printFuncAttrib(Func& func)
{
cudaFuncAttributes attrs;
cudaFuncGetAttributes(&attrs, func);
printf("=== Function stats ===\n");
printf("Name: \n");
printf("sharedSizeBytes = %d\n", attrs.sharedSizeBytes);
printf("constSizeBytes = %d\n", attrs.constSizeBytes);
printf("localSizeBytes = %d\n", attrs.localSizeBytes);
printf("maxThreadsPerBlock = %d\n", attrs.maxThreadsPerBlock);
printf("numRegs = %d\n", attrs.numRegs);
printf("ptxVersion = %d\n", attrs.ptxVersion);
printf("binaryVersion = %d\n", attrs.binaryVersion);
printf("\n");
fflush(stdout);
}
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif /* __OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP_ */

View File

@ -0,0 +1,797 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_FUNCTIONAL_HPP__
#define __OPENCV_CUDA_FUNCTIONAL_HPP__
#include <functional>
#include "saturate_cast.hpp"
#include "vec_traits.hpp"
#include "type_traits.hpp"
#include "device_functions.h"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
// Function Objects
template<typename Argument, typename Result> struct unary_function : public std::unary_function<Argument, Result> {};
template<typename Argument1, typename Argument2, typename Result> struct binary_function : public std::binary_function<Argument1, Argument2, Result> {};
// Arithmetic Operations
template <typename T> struct plus : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a + b;
}
__host__ __device__ __forceinline__ plus() {}
__host__ __device__ __forceinline__ plus(const plus&) {}
};
template <typename T> struct minus : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a - b;
}
__host__ __device__ __forceinline__ minus() {}
__host__ __device__ __forceinline__ minus(const minus&) {}
};
template <typename T> struct multiplies : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a * b;
}
__host__ __device__ __forceinline__ multiplies() {}
__host__ __device__ __forceinline__ multiplies(const multiplies&) {}
};
template <typename T> struct divides : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a / b;
}
__host__ __device__ __forceinline__ divides() {}
__host__ __device__ __forceinline__ divides(const divides&) {}
};
template <typename T> struct modulus : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a % b;
}
__host__ __device__ __forceinline__ modulus() {}
__host__ __device__ __forceinline__ modulus(const modulus&) {}
};
template <typename T> struct negate : unary_function<T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a) const
{
return -a;
}
__host__ __device__ __forceinline__ negate() {}
__host__ __device__ __forceinline__ negate(const negate&) {}
};
// Comparison Operations
template <typename T> struct equal_to : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a == b;
}
__host__ __device__ __forceinline__ equal_to() {}
__host__ __device__ __forceinline__ equal_to(const equal_to&) {}
};
template <typename T> struct not_equal_to : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a != b;
}
__host__ __device__ __forceinline__ not_equal_to() {}
__host__ __device__ __forceinline__ not_equal_to(const not_equal_to&) {}
};
template <typename T> struct greater : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a > b;
}
__host__ __device__ __forceinline__ greater() {}
__host__ __device__ __forceinline__ greater(const greater&) {}
};
template <typename T> struct less : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a < b;
}
__host__ __device__ __forceinline__ less() {}
__host__ __device__ __forceinline__ less(const less&) {}
};
template <typename T> struct greater_equal : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a >= b;
}
__host__ __device__ __forceinline__ greater_equal() {}
__host__ __device__ __forceinline__ greater_equal(const greater_equal&) {}
};
template <typename T> struct less_equal : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a <= b;
}
__host__ __device__ __forceinline__ less_equal() {}
__host__ __device__ __forceinline__ less_equal(const less_equal&) {}
};
// Logical Operations
template <typename T> struct logical_and : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a && b;
}
__host__ __device__ __forceinline__ logical_and() {}
__host__ __device__ __forceinline__ logical_and(const logical_and&) {}
};
template <typename T> struct logical_or : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a || b;
}
__host__ __device__ __forceinline__ logical_or() {}
__host__ __device__ __forceinline__ logical_or(const logical_or&) {}
};
template <typename T> struct logical_not : unary_function<T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a) const
{
return !a;
}
__host__ __device__ __forceinline__ logical_not() {}
__host__ __device__ __forceinline__ logical_not(const logical_not&) {}
};
// Bitwise Operations
template <typename T> struct bit_and : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a & b;
}
__host__ __device__ __forceinline__ bit_and() {}
__host__ __device__ __forceinline__ bit_and(const bit_and&) {}
};
template <typename T> struct bit_or : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a | b;
}
__host__ __device__ __forceinline__ bit_or() {}
__host__ __device__ __forceinline__ bit_or(const bit_or&) {}
};
template <typename T> struct bit_xor : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a ^ b;
}
__host__ __device__ __forceinline__ bit_xor() {}
__host__ __device__ __forceinline__ bit_xor(const bit_xor&) {}
};
template <typename T> struct bit_not : unary_function<T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType v) const
{
return ~v;
}
__host__ __device__ __forceinline__ bit_not() {}
__host__ __device__ __forceinline__ bit_not(const bit_not&) {}
};
// Generalized Identity Operations
template <typename T> struct identity : unary_function<T, T>
{
__device__ __forceinline__ typename TypeTraits<T>::ParameterType operator()(typename TypeTraits<T>::ParameterType x) const
{
return x;
}
__host__ __device__ __forceinline__ identity() {}
__host__ __device__ __forceinline__ identity(const identity&) {}
};
template <typename T1, typename T2> struct project1st : binary_function<T1, T2, T1>
{
__device__ __forceinline__ typename TypeTraits<T1>::ParameterType operator()(typename TypeTraits<T1>::ParameterType lhs, typename TypeTraits<T2>::ParameterType rhs) const
{
return lhs;
}
__host__ __device__ __forceinline__ project1st() {}
__host__ __device__ __forceinline__ project1st(const project1st&) {}
};
template <typename T1, typename T2> struct project2nd : binary_function<T1, T2, T2>
{
__device__ __forceinline__ typename TypeTraits<T2>::ParameterType operator()(typename TypeTraits<T1>::ParameterType lhs, typename TypeTraits<T2>::ParameterType rhs) const
{
return rhs;
}
__host__ __device__ __forceinline__ project2nd() {}
__host__ __device__ __forceinline__ project2nd(const project2nd&) {}
};
// Min/Max Operations
#define OPENCV_CUDA_IMPLEMENT_MINMAX(name, type, op) \
template <> struct name<type> : binary_function<type, type, type> \
{ \
__device__ __forceinline__ type operator()(type lhs, type rhs) const {return op(lhs, rhs);} \
__host__ __device__ __forceinline__ name() {}\
__host__ __device__ __forceinline__ name(const name&) {}\
};
template <typename T> struct maximum : binary_function<T, T, T>
{
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
{
return max(lhs, rhs);
}
__host__ __device__ __forceinline__ maximum() {}
__host__ __device__ __forceinline__ maximum(const maximum&) {}
};
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uchar, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, schar, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, char, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, ushort, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, short, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, int, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uint, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, float, ::fmax)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, double, ::fmax)
template <typename T> struct minimum : binary_function<T, T, T>
{
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
{
return min(lhs, rhs);
}
__host__ __device__ __forceinline__ minimum() {}
__host__ __device__ __forceinline__ minimum(const minimum&) {}
};
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uchar, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, schar, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, char, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, ushort, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, short, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, int, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uint, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, float, ::fmin)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, double, ::fmin)
#undef OPENCV_CUDA_IMPLEMENT_MINMAX
// Math functions
template <typename T> struct abs_func : unary_function<T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType x) const
{
return abs(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned char> : unary_function<unsigned char, unsigned char>
{
__device__ __forceinline__ unsigned char operator ()(unsigned char x) const
{
return x;
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<signed char> : unary_function<signed char, signed char>
{
__device__ __forceinline__ signed char operator ()(signed char x) const
{
return ::abs((int)x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<char> : unary_function<char, char>
{
__device__ __forceinline__ char operator ()(char x) const
{
return ::abs((int)x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned short> : unary_function<unsigned short, unsigned short>
{
__device__ __forceinline__ unsigned short operator ()(unsigned short x) const
{
return x;
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<short> : unary_function<short, short>
{
__device__ __forceinline__ short operator ()(short x) const
{
return ::abs((int)x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned int> : unary_function<unsigned int, unsigned int>
{
__device__ __forceinline__ unsigned int operator ()(unsigned int x) const
{
return x;
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<int> : unary_function<int, int>
{
__device__ __forceinline__ int operator ()(int x) const
{
return ::abs(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<float> : unary_function<float, float>
{
__device__ __forceinline__ float operator ()(float x) const
{
return ::fabsf(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<double> : unary_function<double, double>
{
__device__ __forceinline__ double operator ()(double x) const
{
return ::fabs(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
#define OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(name, func) \
template <typename T> struct name ## _func : unary_function<T, float> \
{ \
__device__ __forceinline__ float operator ()(typename TypeTraits<T>::ParameterType v) const \
{ \
return func ## f(v); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
}; \
template <> struct name ## _func<double> : unary_function<double, double> \
{ \
__device__ __forceinline__ double operator ()(double v) const \
{ \
return func(v); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
};
#define OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(name, func) \
template <typename T> struct name ## _func : binary_function<T, T, float> \
{ \
__device__ __forceinline__ float operator ()(typename TypeTraits<T>::ParameterType v1, typename TypeTraits<T>::ParameterType v2) const \
{ \
return func ## f(v1, v2); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
}; \
template <> struct name ## _func<double> : binary_function<double, double, double> \
{ \
__device__ __forceinline__ double operator ()(double v1, double v2) const \
{ \
return func(v1, v2); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
};
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sqrt, ::sqrt)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp, ::exp)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp2, ::exp2)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp10, ::exp10)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log, ::log)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log2, ::log2)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log10, ::log10)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sin, ::sin)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cos, ::cos)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tan, ::tan)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asin, ::asin)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acos, ::acos)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atan, ::atan)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sinh, ::sinh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cosh, ::cosh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tanh, ::tanh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asinh, ::asinh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acosh, ::acosh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atanh, ::atanh)
OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(hypot, ::hypot)
OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(atan2, ::atan2)
OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(pow, ::pow)
#undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR
#undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR_NO_DOUBLE
#undef OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR
template<typename T> struct hypot_sqr_func : binary_function<T, T, float>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType src1, typename TypeTraits<T>::ParameterType src2) const
{
return src1 * src1 + src2 * src2;
}
__host__ __device__ __forceinline__ hypot_sqr_func() {}
__host__ __device__ __forceinline__ hypot_sqr_func(const hypot_sqr_func&) {}
};
// Saturate Cast Functor
template <typename T, typename D> struct saturate_cast_func : unary_function<T, D>
{
__device__ __forceinline__ D operator ()(typename TypeTraits<T>::ParameterType v) const
{
return saturate_cast<D>(v);
}
__host__ __device__ __forceinline__ saturate_cast_func() {}
__host__ __device__ __forceinline__ saturate_cast_func(const saturate_cast_func&) {}
};
// Threshold Functors
template <typename T> struct thresh_binary_func : unary_function<T, T>
{
__host__ __device__ __forceinline__ thresh_binary_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src > thresh) * maxVal;
}
__host__ __device__ __forceinline__ thresh_binary_func() {}
__host__ __device__ __forceinline__ thresh_binary_func(const thresh_binary_func& other)
: thresh(other.thresh), maxVal(other.maxVal) {}
T thresh;
T maxVal;
};
template <typename T> struct thresh_binary_inv_func : unary_function<T, T>
{
__host__ __device__ __forceinline__ thresh_binary_inv_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src <= thresh) * maxVal;
}
__host__ __device__ __forceinline__ thresh_binary_inv_func() {}
__host__ __device__ __forceinline__ thresh_binary_inv_func(const thresh_binary_inv_func& other)
: thresh(other.thresh), maxVal(other.maxVal) {}
T thresh;
T maxVal;
};
template <typename T> struct thresh_trunc_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_trunc_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return minimum<T>()(src, thresh);
}
__host__ __device__ __forceinline__ thresh_trunc_func() {}
__host__ __device__ __forceinline__ thresh_trunc_func(const thresh_trunc_func& other)
: thresh(other.thresh) {}
T thresh;
};
template <typename T> struct thresh_to_zero_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_to_zero_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src > thresh) * src;
}
__host__ __device__ __forceinline__ thresh_to_zero_func() {}
__host__ __device__ __forceinline__ thresh_to_zero_func(const thresh_to_zero_func& other)
: thresh(other.thresh) {}
T thresh;
};
template <typename T> struct thresh_to_zero_inv_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_to_zero_inv_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src <= thresh) * src;
}
__host__ __device__ __forceinline__ thresh_to_zero_inv_func() {}
__host__ __device__ __forceinline__ thresh_to_zero_inv_func(const thresh_to_zero_inv_func& other)
: thresh(other.thresh) {}
T thresh;
};
// Function Object Adaptors
template <typename Predicate> struct unary_negate : unary_function<typename Predicate::argument_type, bool>
{
explicit __host__ __device__ __forceinline__ unary_negate(const Predicate& p) : pred(p) {}
__device__ __forceinline__ bool operator()(typename TypeTraits<typename Predicate::argument_type>::ParameterType x) const
{
return !pred(x);
}
__host__ __device__ __forceinline__ unary_negate() {}
__host__ __device__ __forceinline__ unary_negate(const unary_negate& other) : pred(other.pred) {}
Predicate pred;
};
template <typename Predicate> __host__ __device__ __forceinline__ unary_negate<Predicate> not1(const Predicate& pred)
{
return unary_negate<Predicate>(pred);
}
template <typename Predicate> struct binary_negate : binary_function<typename Predicate::first_argument_type, typename Predicate::second_argument_type, bool>
{
explicit __host__ __device__ __forceinline__ binary_negate(const Predicate& p) : pred(p) {}
__device__ __forceinline__ bool operator()(typename TypeTraits<typename Predicate::first_argument_type>::ParameterType x,
typename TypeTraits<typename Predicate::second_argument_type>::ParameterType y) const
{
return !pred(x,y);
}
__host__ __device__ __forceinline__ binary_negate() {}
__host__ __device__ __forceinline__ binary_negate(const binary_negate& other) : pred(other.pred) {}
Predicate pred;
};
template <typename BinaryPredicate> __host__ __device__ __forceinline__ binary_negate<BinaryPredicate> not2(const BinaryPredicate& pred)
{
return binary_negate<BinaryPredicate>(pred);
}
template <typename Op> struct binder1st : unary_function<typename Op::second_argument_type, typename Op::result_type>
{
__host__ __device__ __forceinline__ binder1st(const Op& op_, const typename Op::first_argument_type& arg1_) : op(op_), arg1(arg1_) {}
__device__ __forceinline__ typename Op::result_type operator ()(typename TypeTraits<typename Op::second_argument_type>::ParameterType a) const
{
return op(arg1, a);
}
__host__ __device__ __forceinline__ binder1st() {}
__host__ __device__ __forceinline__ binder1st(const binder1st& other) : op(other.op), arg1(other.arg1) {}
Op op;
typename Op::first_argument_type arg1;
};
template <typename Op, typename T> __host__ __device__ __forceinline__ binder1st<Op> bind1st(const Op& op, const T& x)
{
return binder1st<Op>(op, typename Op::first_argument_type(x));
}
template <typename Op> struct binder2nd : unary_function<typename Op::first_argument_type, typename Op::result_type>
{
__host__ __device__ __forceinline__ binder2nd(const Op& op_, const typename Op::second_argument_type& arg2_) : op(op_), arg2(arg2_) {}
__forceinline__ __device__ typename Op::result_type operator ()(typename TypeTraits<typename Op::first_argument_type>::ParameterType a) const
{
return op(a, arg2);
}
__host__ __device__ __forceinline__ binder2nd() {}
__host__ __device__ __forceinline__ binder2nd(const binder2nd& other) : op(other.op), arg2(other.arg2) {}
Op op;
typename Op::second_argument_type arg2;
};
template <typename Op, typename T> __host__ __device__ __forceinline__ binder2nd<Op> bind2nd(const Op& op, const T& x)
{
return binder2nd<Op>(op, typename Op::second_argument_type(x));
}
// Functor Traits
template <typename F> struct IsUnaryFunction
{
typedef char Yes;
struct No {Yes a[2];};
template <typename T, typename D> static Yes check(unary_function<T, D>);
static No check(...);
static F makeF();
enum { value = (sizeof(check(makeF())) == sizeof(Yes)) };
};
template <typename F> struct IsBinaryFunction
{
typedef char Yes;
struct No {Yes a[2];};
template <typename T1, typename T2, typename D> static Yes check(binary_function<T1, T2, D>);
static No check(...);
static F makeF();
enum { value = (sizeof(check(makeF())) == sizeof(Yes)) };
};
namespace functional_detail
{
template <size_t src_elem_size, size_t dst_elem_size> struct UnOpShift { enum { shift = 1 }; };
template <size_t src_elem_size> struct UnOpShift<src_elem_size, 1> { enum { shift = 4 }; };
template <size_t src_elem_size> struct UnOpShift<src_elem_size, 2> { enum { shift = 2 }; };
template <typename T, typename D> struct DefaultUnaryShift
{
enum { shift = UnOpShift<sizeof(T), sizeof(D)>::shift };
};
template <size_t src_elem_size1, size_t src_elem_size2, size_t dst_elem_size> struct BinOpShift { enum { shift = 1 }; };
template <size_t src_elem_size1, size_t src_elem_size2> struct BinOpShift<src_elem_size1, src_elem_size2, 1> { enum { shift = 4 }; };
template <size_t src_elem_size1, size_t src_elem_size2> struct BinOpShift<src_elem_size1, src_elem_size2, 2> { enum { shift = 2 }; };
template <typename T1, typename T2, typename D> struct DefaultBinaryShift
{
enum { shift = BinOpShift<sizeof(T1), sizeof(T2), sizeof(D)>::shift };
};
template <typename Func, bool unary = IsUnaryFunction<Func>::value> struct ShiftDispatcher;
template <typename Func> struct ShiftDispatcher<Func, true>
{
enum { shift = DefaultUnaryShift<typename Func::argument_type, typename Func::result_type>::shift };
};
template <typename Func> struct ShiftDispatcher<Func, false>
{
enum { shift = DefaultBinaryShift<typename Func::first_argument_type, typename Func::second_argument_type, typename Func::result_type>::shift };
};
}
template <typename Func> struct DefaultTransformShift
{
enum { shift = functional_detail::ShiftDispatcher<Func>::shift };
};
template <typename Func> struct DefaultTransformFunctorTraits
{
enum { simple_block_dim_x = 16 };
enum { simple_block_dim_y = 16 };
enum { smart_block_dim_x = 16 };
enum { smart_block_dim_y = 16 };
enum { smart_shift = DefaultTransformShift<Func>::shift };
};
template <typename Func> struct TransformFunctorTraits : DefaultTransformFunctorTraits<Func> {};
#define OPENCV_CUDA_TRANSFORM_FUNCTOR_TRAITS(type) \
template <> struct TransformFunctorTraits< type > : DefaultTransformFunctorTraits< type >
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_FUNCTIONAL_HPP__

View File

@ -0,0 +1,128 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_LIMITS_HPP__
#define __OPENCV_CUDA_LIMITS_HPP__
#include <limits.h>
#include <float.h>
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <class T> struct numeric_limits;
template <> struct numeric_limits<bool>
{
__device__ __forceinline__ static bool min() { return false; }
__device__ __forceinline__ static bool max() { return true; }
static const bool is_signed = false;
};
template <> struct numeric_limits<signed char>
{
__device__ __forceinline__ static signed char min() { return SCHAR_MIN; }
__device__ __forceinline__ static signed char max() { return SCHAR_MAX; }
static const bool is_signed = true;
};
template <> struct numeric_limits<unsigned char>
{
__device__ __forceinline__ static unsigned char min() { return 0; }
__device__ __forceinline__ static unsigned char max() { return UCHAR_MAX; }
static const bool is_signed = false;
};
template <> struct numeric_limits<short>
{
__device__ __forceinline__ static short min() { return SHRT_MIN; }
__device__ __forceinline__ static short max() { return SHRT_MAX; }
static const bool is_signed = true;
};
template <> struct numeric_limits<unsigned short>
{
__device__ __forceinline__ static unsigned short min() { return 0; }
__device__ __forceinline__ static unsigned short max() { return USHRT_MAX; }
static const bool is_signed = false;
};
template <> struct numeric_limits<int>
{
__device__ __forceinline__ static int min() { return INT_MIN; }
__device__ __forceinline__ static int max() { return INT_MAX; }
static const bool is_signed = true;
};
template <> struct numeric_limits<unsigned int>
{
__device__ __forceinline__ static unsigned int min() { return 0; }
__device__ __forceinline__ static unsigned int max() { return UINT_MAX; }
static const bool is_signed = false;
};
template <> struct numeric_limits<float>
{
__device__ __forceinline__ static float min() { return FLT_MIN; }
__device__ __forceinline__ static float max() { return FLT_MAX; }
__device__ __forceinline__ static float epsilon() { return FLT_EPSILON; }
static const bool is_signed = true;
};
template <> struct numeric_limits<double>
{
__device__ __forceinline__ static double min() { return DBL_MIN; }
__device__ __forceinline__ static double max() { return DBL_MAX; }
__device__ __forceinline__ static double epsilon() { return DBL_EPSILON; }
static const bool is_signed = true;
};
}}} // namespace cv { namespace cuda { namespace cudev {
//! @endcond
#endif // __OPENCV_CUDA_LIMITS_HPP__

View File

@ -0,0 +1,205 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_REDUCE_HPP__
#define __OPENCV_CUDA_REDUCE_HPP__
#include <thrust/tuple.h>
#include "detail/reduce.hpp"
#include "detail/reduce_key_val.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <int N, typename T, class Op>
__device__ __forceinline__ void reduce(volatile T* smem, T& val, unsigned int tid, const Op& op)
{
reduce_detail::Dispatcher<N>::reductor::template reduce<volatile T*, T&, const Op&>(smem, val, tid, op);
}
template <int N,
typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void reduce(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
reduce_detail::Dispatcher<N>::reductor::template reduce<
const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>&,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>&,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>&>(smem, val, tid, op);
}
template <unsigned int N, typename K, typename V, class Cmp>
__device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key, volatile V* svals, V& val, unsigned int tid, const Cmp& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<volatile K*, K&, volatile V*, V&, const Cmp&>(skeys, key, svals, val, tid, cmp);
}
template <unsigned int N,
typename K,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid, const Cmp& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<volatile K*, K&,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>&,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>&,
const Cmp&>(skeys, key, svals, val, tid, cmp);
}
template <unsigned int N,
typename KP0, typename KP1, typename KP2, typename KP3, typename KP4, typename KP5, typename KP6, typename KP7, typename KP8, typename KP9,
typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void reduceKeyVal(const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>& skeys,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<
const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>&,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>&,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>&,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>&,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>&
>(skeys, key, svals, val, tid, cmp);
}
// smem_tuple
template <typename T0>
__device__ __forceinline__
thrust::tuple<volatile T0*>
smem_tuple(T0* t0)
{
return thrust::make_tuple((volatile T0*) t0);
}
template <typename T0, typename T1>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*>
smem_tuple(T0* t0, T1* t1)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1);
}
template <typename T0, typename T1, typename T2>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*>
smem_tuple(T0* t0, T1* t1, T2* t2)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2);
}
template <typename T0, typename T1, typename T2, typename T3>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*, volatile T8*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*, volatile T8*, volatile T9*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8, T9* t9)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8, (volatile T9*) t9);
}
}}}
//! @endcond
#endif // __OPENCV_CUDA_UTILITY_HPP__

View File

@ -0,0 +1,292 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_SATURATE_CAST_HPP__
#define __OPENCV_CUDA_SATURATE_CAST_HPP__
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(uchar v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(schar v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(ushort v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(short v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(uint v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(int v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(float v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(double v) { return _Tp(v); }
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(schar v)
{
uint res = 0;
int vi = v;
asm("cvt.sat.u8.s8 %0, %1;" : "=r"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(short v)
{
uint res = 0;
asm("cvt.sat.u8.s16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(ushort v)
{
uint res = 0;
asm("cvt.sat.u8.u16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(int v)
{
uint res = 0;
asm("cvt.sat.u8.s32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(uint v)
{
uint res = 0;
asm("cvt.sat.u8.u32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(float v)
{
uint res = 0;
asm("cvt.rni.sat.u8.f32 %0, %1;" : "=r"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(double v)
{
#if __CUDA_ARCH__ >= 130
uint res = 0;
asm("cvt.rni.sat.u8.f64 %0, %1;" : "=r"(res) : "d"(v));
return res;
#else
return saturate_cast<uchar>((float)v);
#endif
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(uchar v)
{
uint res = 0;
uint vi = v;
asm("cvt.sat.s8.u8 %0, %1;" : "=r"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(short v)
{
uint res = 0;
asm("cvt.sat.s8.s16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(ushort v)
{
uint res = 0;
asm("cvt.sat.s8.u16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(int v)
{
uint res = 0;
asm("cvt.sat.s8.s32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(uint v)
{
uint res = 0;
asm("cvt.sat.s8.u32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(float v)
{
uint res = 0;
asm("cvt.rni.sat.s8.f32 %0, %1;" : "=r"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(double v)
{
#if __CUDA_ARCH__ >= 130
uint res = 0;
asm("cvt.rni.sat.s8.f64 %0, %1;" : "=r"(res) : "d"(v));
return res;
#else
return saturate_cast<schar>((float)v);
#endif
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(schar v)
{
ushort res = 0;
int vi = v;
asm("cvt.sat.u16.s8 %0, %1;" : "=h"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(short v)
{
ushort res = 0;
asm("cvt.sat.u16.s16 %0, %1;" : "=h"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(int v)
{
ushort res = 0;
asm("cvt.sat.u16.s32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(uint v)
{
ushort res = 0;
asm("cvt.sat.u16.u32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(float v)
{
ushort res = 0;
asm("cvt.rni.sat.u16.f32 %0, %1;" : "=h"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(double v)
{
#if __CUDA_ARCH__ >= 130
ushort res = 0;
asm("cvt.rni.sat.u16.f64 %0, %1;" : "=h"(res) : "d"(v));
return res;
#else
return saturate_cast<ushort>((float)v);
#endif
}
template<> __device__ __forceinline__ short saturate_cast<short>(ushort v)
{
short res = 0;
asm("cvt.sat.s16.u16 %0, %1;" : "=h"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(int v)
{
short res = 0;
asm("cvt.sat.s16.s32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(uint v)
{
short res = 0;
asm("cvt.sat.s16.u32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(float v)
{
short res = 0;
asm("cvt.rni.sat.s16.f32 %0, %1;" : "=h"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(double v)
{
#if __CUDA_ARCH__ >= 130
short res = 0;
asm("cvt.rni.sat.s16.f64 %0, %1;" : "=h"(res) : "d"(v));
return res;
#else
return saturate_cast<short>((float)v);
#endif
}
template<> __device__ __forceinline__ int saturate_cast<int>(uint v)
{
int res = 0;
asm("cvt.sat.s32.u32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ int saturate_cast<int>(float v)
{
return __float2int_rn(v);
}
template<> __device__ __forceinline__ int saturate_cast<int>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
return __double2int_rn(v);
#else
return saturate_cast<int>((float)v);
#endif
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(schar v)
{
uint res = 0;
int vi = v;
asm("cvt.sat.u32.s8 %0, %1;" : "=r"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(short v)
{
uint res = 0;
asm("cvt.sat.u32.s16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(int v)
{
uint res = 0;
asm("cvt.sat.u32.s32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(float v)
{
return __float2uint_rn(v);
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
return __double2uint_rn(v);
#else
return saturate_cast<uint>((float)v);
#endif
}
}}}
//! @endcond
#endif /* __OPENCV_CUDA_SATURATE_CAST_HPP__ */

View File

@ -0,0 +1,258 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_SCAN_HPP__
#define __OPENCV_CUDA_SCAN_HPP__
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/utility.hpp"
#include "opencv2/core/cuda/warp.hpp"
#include "opencv2/core/cuda/warp_shuffle.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
enum ScanKind { EXCLUSIVE = 0, INCLUSIVE = 1 };
template <ScanKind Kind, typename T, typename F> struct WarpScan
{
__device__ __forceinline__ WarpScan() {}
__device__ __forceinline__ WarpScan(const WarpScan& other) { (void)other; }
__device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
{
const unsigned int lane = idx & 31;
F op;
if ( lane >= 1) ptr [idx ] = op(ptr [idx - 1], ptr [idx]);
if ( lane >= 2) ptr [idx ] = op(ptr [idx - 2], ptr [idx]);
if ( lane >= 4) ptr [idx ] = op(ptr [idx - 4], ptr [idx]);
if ( lane >= 8) ptr [idx ] = op(ptr [idx - 8], ptr [idx]);
if ( lane >= 16) ptr [idx ] = op(ptr [idx - 16], ptr [idx]);
if( Kind == INCLUSIVE )
return ptr [idx];
else
return (lane > 0) ? ptr [idx - 1] : 0;
}
__device__ __forceinline__ unsigned int index(const unsigned int tid)
{
return tid;
}
__device__ __forceinline__ void init(volatile T *ptr){}
static const int warp_offset = 0;
typedef WarpScan<INCLUSIVE, T, F> merge;
};
template <ScanKind Kind , typename T, typename F> struct WarpScanNoComp
{
__device__ __forceinline__ WarpScanNoComp() {}
__device__ __forceinline__ WarpScanNoComp(const WarpScanNoComp& other) { (void)other; }
__device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
{
const unsigned int lane = threadIdx.x & 31;
F op;
ptr [idx ] = op(ptr [idx - 1], ptr [idx]);
ptr [idx ] = op(ptr [idx - 2], ptr [idx]);
ptr [idx ] = op(ptr [idx - 4], ptr [idx]);
ptr [idx ] = op(ptr [idx - 8], ptr [idx]);
ptr [idx ] = op(ptr [idx - 16], ptr [idx]);
if( Kind == INCLUSIVE )
return ptr [idx];
else
return (lane > 0) ? ptr [idx - 1] : 0;
}
__device__ __forceinline__ unsigned int index(const unsigned int tid)
{
return (tid >> warp_log) * warp_smem_stride + 16 + (tid & warp_mask);
}
__device__ __forceinline__ void init(volatile T *ptr)
{
ptr[threadIdx.x] = 0;
}
static const int warp_smem_stride = 32 + 16 + 1;
static const int warp_offset = 16;
static const int warp_log = 5;
static const int warp_mask = 31;
typedef WarpScanNoComp<INCLUSIVE, T, F> merge;
};
template <ScanKind Kind , typename T, typename Sc, typename F> struct BlockScan
{
__device__ __forceinline__ BlockScan() {}
__device__ __forceinline__ BlockScan(const BlockScan& other) { (void)other; }
__device__ __forceinline__ T operator()(volatile T *ptr)
{
const unsigned int tid = threadIdx.x;
const unsigned int lane = tid & warp_mask;
const unsigned int warp = tid >> warp_log;
Sc scan;
typename Sc::merge merge_scan;
const unsigned int idx = scan.index(tid);
T val = scan(ptr, idx);
__syncthreads ();
if( warp == 0)
scan.init(ptr);
__syncthreads ();
if( lane == 31 )
ptr [scan.warp_offset + warp ] = (Kind == INCLUSIVE) ? val : ptr [idx];
__syncthreads ();
if( warp == 0 )
merge_scan(ptr, idx);
__syncthreads();
if ( warp > 0)
val = ptr [scan.warp_offset + warp - 1] + val;
__syncthreads ();
ptr[idx] = val;
__syncthreads ();
return val ;
}
static const int warp_log = 5;
static const int warp_mask = 31;
};
template <typename T>
__device__ T warpScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
{
#if __CUDA_ARCH__ >= 300
const unsigned int laneId = cv::cuda::device::Warp::laneId();
// scan on shuffl functions
#pragma unroll
for (int i = 1; i <= (OPENCV_CUDA_WARP_SIZE / 2); i *= 2)
{
const T n = cv::cuda::device::shfl_up(idata, i);
if (laneId >= i)
idata += n;
}
return idata;
#else
unsigned int pos = 2 * tid - (tid & (OPENCV_CUDA_WARP_SIZE - 1));
s_Data[pos] = 0;
pos += OPENCV_CUDA_WARP_SIZE;
s_Data[pos] = idata;
s_Data[pos] += s_Data[pos - 1];
s_Data[pos] += s_Data[pos - 2];
s_Data[pos] += s_Data[pos - 4];
s_Data[pos] += s_Data[pos - 8];
s_Data[pos] += s_Data[pos - 16];
return s_Data[pos];
#endif
}
template <typename T>
__device__ __forceinline__ T warpScanExclusive(T idata, volatile T* s_Data, unsigned int tid)
{
return warpScanInclusive(idata, s_Data, tid) - idata;
}
template <int tiNumScanThreads, typename T>
__device__ T blockScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
{
if (tiNumScanThreads > OPENCV_CUDA_WARP_SIZE)
{
//Bottom-level inclusive warp scan
T warpResult = warpScanInclusive(idata, s_Data, tid);
//Save top elements of each warp for exclusive warp scan
//sync to wait for warp scans to complete (because s_Data is being overwritten)
__syncthreads();
if ((tid & (OPENCV_CUDA_WARP_SIZE - 1)) == (OPENCV_CUDA_WARP_SIZE - 1))
{
s_Data[tid >> OPENCV_CUDA_LOG_WARP_SIZE] = warpResult;
}
//wait for warp scans to complete
__syncthreads();
if (tid < (tiNumScanThreads / OPENCV_CUDA_WARP_SIZE) )
{
//grab top warp elements
T val = s_Data[tid];
//calculate exclusive scan and write back to shared memory
s_Data[tid] = warpScanExclusive(val, s_Data, tid);
}
//return updated warp scans with exclusive scan results
__syncthreads();
return warpResult + s_Data[tid >> OPENCV_CUDA_LOG_WARP_SIZE];
}
else
{
return warpScanInclusive(idata, s_Data, tid);
}
}
}}}
//! @endcond
#endif // __OPENCV_CUDA_SCAN_HPP__

View File

@ -0,0 +1,869 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
* Copyright (c) 2013 NVIDIA Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of NVIDIA Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __OPENCV_CUDA_SIMD_FUNCTIONS_HPP__
#define __OPENCV_CUDA_SIMD_FUNCTIONS_HPP__
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
// 2
static __device__ __forceinline__ unsigned int vadd2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vadd2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vadd.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = a ^ b; // sum bits
r = a + b; // actual sum
s = s ^ r; // determine carry-ins for each bit position
s = s & 0x00010000; // carry-in to high word (= carry-out from low word)
r = r - s; // subtract out carry-out from low word
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsub2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vsub2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vsub.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = a ^ b; // sum bits
r = a - b; // actual sum
s = s ^ r; // determine carry-ins for each bit position
s = s & 0x00010000; // borrow to high word
r = r + s; // compensate for borrow from low word
#endif
return r;
}
static __device__ __forceinline__ unsigned int vabsdiff2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vabsdiff2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vabsdiff.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t, u, v;
s = a & 0x0000ffff; // extract low halfword
r = b & 0x0000ffff; // extract low halfword
u = ::max(r, s); // maximum of low halfwords
v = ::min(r, s); // minimum of low halfwords
s = a & 0xffff0000; // extract high halfword
r = b & 0xffff0000; // extract high halfword
t = ::max(r, s); // maximum of high halfwords
s = ::min(r, s); // minimum of high halfwords
r = u | t; // maximum of both halfwords
s = v | s; // minimum of both halfwords
r = r - s; // |a - b| = max(a,b) - min(a,b);
#endif
return r;
}
static __device__ __forceinline__ unsigned int vavg2(unsigned int a, unsigned int b)
{
unsigned int r, s;
// HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==>
// (a + b) / 2 = (a & b) + ((a ^ b) >> 1)
s = a ^ b;
r = a & b;
s = s & 0xfffefffe; // ensure shift doesn't cross halfword boundaries
s = s >> 1;
s = r + s;
return s;
}
static __device__ __forceinline__ unsigned int vavrg2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vavrg2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==>
// (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1)
unsigned int s;
s = a ^ b;
r = a | b;
s = s & 0xfffefffe; // ensure shift doesn't cross half-word boundaries
s = s >> 1;
r = r - s;
#endif
return r;
}
static __device__ __forceinline__ unsigned int vseteq2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
r = r ^ c; // extract msbs, msb = 1 if r < 0x8000
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r & ~c; // msb = 1, if r was 0x0000
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpeq2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vseteq2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
r = r ^ c; // extract msbs, msb = 1 if r < 0x8000
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r & ~c; // msb = 1, if r was 0x0000
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetge2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpge2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetge2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(b));
c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetgt2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80008000; // msbs = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpgt2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetgt2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80008000; // msbs = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetle2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmple2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetle2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetlt2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmplt2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetlt2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetne2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm ("vset2.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r | c; // msb = 1, if r was not 0x0000
c = c & 0x80008000; // extract msbs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpne2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetne2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r | c; // msb = 1, if r was not 0x0000
c = c & 0x80008000; // extract msbs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vmax2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmax2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmax.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t, u;
r = a & 0x0000ffff; // extract low halfword
s = b & 0x0000ffff; // extract low halfword
t = ::max(r, s); // maximum of low halfwords
r = a & 0xffff0000; // extract high halfword
s = b & 0xffff0000; // extract high halfword
u = ::max(r, s); // maximum of high halfwords
r = t | u; // combine halfword maximums
#endif
return r;
}
static __device__ __forceinline__ unsigned int vmin2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmin2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmin.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t, u;
r = a & 0x0000ffff; // extract low halfword
s = b & 0x0000ffff; // extract low halfword
t = ::min(r, s); // minimum of low halfwords
r = a & 0xffff0000; // extract high halfword
s = b & 0xffff0000; // extract high halfword
u = ::min(r, s); // minimum of high halfwords
r = t | u; // combine halfword minimums
#endif
return r;
}
// 4
static __device__ __forceinline__ unsigned int vadd4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vadd4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vadd.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t;
s = a ^ b; // sum bits
r = a & 0x7f7f7f7f; // clear msbs
t = b & 0x7f7f7f7f; // clear msbs
s = s & 0x80808080; // msb sum bits
r = r + t; // add without msbs, record carry-out in msbs
r = r ^ s; // sum of msb sum and carry-in bits, w/o carry-out
#endif /* __CUDA_ARCH__ >= 300 */
return r;
}
static __device__ __forceinline__ unsigned int vsub4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vsub4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vsub.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t;
s = a ^ ~b; // inverted sum bits
r = a | 0x80808080; // set msbs
t = b & 0x7f7f7f7f; // clear msbs
s = s & 0x80808080; // inverted msb sum bits
r = r - t; // subtract w/o msbs, record inverted borrows in msb
r = r ^ s; // combine inverted msb sum bits and borrows
#endif
return r;
}
static __device__ __forceinline__ unsigned int vavg4(unsigned int a, unsigned int b)
{
unsigned int r, s;
// HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==>
// (a + b) / 2 = (a & b) + ((a ^ b) >> 1)
s = a ^ b;
r = a & b;
s = s & 0xfefefefe; // ensure following shift doesn't cross byte boundaries
s = s >> 1;
s = r + s;
return s;
}
static __device__ __forceinline__ unsigned int vavrg4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vavrg4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==>
// (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1)
unsigned int c;
c = a ^ b;
r = a | b;
c = c & 0xfefefefe; // ensure following shift doesn't cross byte boundaries
c = c >> 1;
r = r - c;
#endif
return r;
}
static __device__ __forceinline__ unsigned int vseteq4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x00 if a == b
c = r | 0x80808080; // set msbs, to catch carry out
r = r ^ c; // extract msbs, msb = 1 if r < 0x80
c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
c = r & ~c; // msb = 1, if r was 0x00
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpeq4(unsigned int a, unsigned int b)
{
unsigned int r, t;
#if __CUDA_ARCH__ >= 300
r = vseteq4(a, b);
t = r << 8; // convert bool
r = t - r; // to mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
t = a ^ b; // 0x00 if a == b
r = t | 0x80808080; // set msbs, to catch carry out
t = t ^ r; // extract msbs, msb = 1 if t < 0x80
r = r - 0x01010101; // msb = 0, if t was 0x00 or 0x80
r = t & ~r; // msb = 1, if t was 0x00
t = r >> 7; // build mask
t = r - t; // from
r = t | r; // msbs
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetle4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmple4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetle4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80808080; // msbs = carry-outs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetlt4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmplt4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetlt4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80808080; // msbs = carry-outs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetge4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavrg4(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpge4(unsigned int a, unsigned int b)
{
unsigned int r, s;
#if __CUDA_ARCH__ >= 300
r = vsetge4(a, b);
s = r << 8; // convert bool
r = s - r; // to mask
#else
asm ("not.b32 %0,%0;" : "+r"(b));
r = vavrg4 (a, b); // (a + ~b + 1) / 2 = (a - b) / 2
r = r & 0x80808080; // msb = carry-outs
s = r >> 7; // build mask
s = r - s; // from
r = s | r; // msbs
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetgt4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpgt4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetgt4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetne4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x00 if a == b
c = r | 0x80808080; // set msbs, to catch carry out
c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
c = r | c; // msb = 1, if r was not 0x00
c = c & 0x80808080; // extract msbs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpne4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetne4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
r = a ^ b; // 0x00 if a == b
c = r | 0x80808080; // set msbs, to catch carry out
c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
c = r | c; // msb = 1, if r was not 0x00
c = c & 0x80808080; // extract msbs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vabsdiff4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vabsdiff4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vabsdiff.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = vcmpge4(a, b); // mask = 0xff if a >= b
r = a ^ b; //
s = (r & s) ^ b; // select a when a >= b, else select b => max(a,b)
r = s ^ r; // select a when b >= a, else select b => min(a,b)
r = s - r; // |a - b| = max(a,b) - min(a,b);
#endif
return r;
}
static __device__ __forceinline__ unsigned int vmax4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmax4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmax.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = vcmpge4(a, b); // mask = 0xff if a >= b
r = a & s; // select a when b >= a
s = b & ~s; // select b when b < a
r = r | s; // combine byte selections
#endif
return r; // byte-wise unsigned maximum
}
static __device__ __forceinline__ unsigned int vmin4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmin4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmin.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = vcmpge4(b, a); // mask = 0xff if a >= b
r = a & s; // select a when b >= a
s = b & ~s; // select b when b < a
r = r | s; // combine byte selections
#endif
return r;
}
}}}
//! @endcond
#endif // __OPENCV_CUDA_SIMD_FUNCTIONS_HPP__

View File

@ -0,0 +1,75 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_TRANSFORM_HPP__
#define __OPENCV_CUDA_TRANSFORM_HPP__
#include "common.hpp"
#include "utility.hpp"
#include "detail/transform_detail.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <typename T, typename D, typename UnOp, typename Mask>
static inline void transform(PtrStepSz<T> src, PtrStepSz<D> dst, UnOp op, const Mask& mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<UnOp> ft;
transform_detail::TransformDispatcher<VecTraits<T>::cn == 1 && VecTraits<D>::cn == 1 && ft::smart_shift != 1>::call(src, dst, op, mask, stream);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static inline void transform(PtrStepSz<T1> src1, PtrStepSz<T2> src2, PtrStepSz<D> dst, BinOp op, const Mask& mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<BinOp> ft;
transform_detail::TransformDispatcher<VecTraits<T1>::cn == 1 && VecTraits<T2>::cn == 1 && VecTraits<D>::cn == 1 && ft::smart_shift != 1>::call(src1, src2, dst, op, mask, stream);
}
}}}
//! @endcond
#endif // __OPENCV_CUDA_TRANSFORM_HPP__

View File

@ -0,0 +1,90 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_TYPE_TRAITS_HPP__
#define __OPENCV_CUDA_TYPE_TRAITS_HPP__
#include "detail/type_traits_detail.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <typename T> struct IsSimpleParameter
{
enum {value = type_traits_detail::IsIntegral<T>::value || type_traits_detail::IsFloat<T>::value ||
type_traits_detail::PointerTraits<typename type_traits_detail::ReferenceTraits<T>::type>::value};
};
template <typename T> struct TypeTraits
{
typedef typename type_traits_detail::UnConst<T>::type NonConstType;
typedef typename type_traits_detail::UnVolatile<T>::type NonVolatileType;
typedef typename type_traits_detail::UnVolatile<typename type_traits_detail::UnConst<T>::type>::type UnqualifiedType;
typedef typename type_traits_detail::PointerTraits<UnqualifiedType>::type PointeeType;
typedef typename type_traits_detail::ReferenceTraits<T>::type ReferredType;
enum { isConst = type_traits_detail::UnConst<T>::value };
enum { isVolatile = type_traits_detail::UnVolatile<T>::value };
enum { isReference = type_traits_detail::ReferenceTraits<UnqualifiedType>::value };
enum { isPointer = type_traits_detail::PointerTraits<typename type_traits_detail::ReferenceTraits<UnqualifiedType>::type>::value };
enum { isUnsignedInt = type_traits_detail::IsUnsignedIntegral<UnqualifiedType>::value };
enum { isSignedInt = type_traits_detail::IsSignedIntergral<UnqualifiedType>::value };
enum { isIntegral = type_traits_detail::IsIntegral<UnqualifiedType>::value };
enum { isFloat = type_traits_detail::IsFloat<UnqualifiedType>::value };
enum { isArith = isIntegral || isFloat };
enum { isVec = type_traits_detail::IsVec<UnqualifiedType>::value };
typedef typename type_traits_detail::Select<IsSimpleParameter<UnqualifiedType>::value,
T, typename type_traits_detail::AddParameterType<T>::type>::type ParameterType;
};
}}}
//! @endcond
#endif // __OPENCV_CUDA_TYPE_TRAITS_HPP__

View File

@ -0,0 +1,221 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_UTILITY_HPP__
#define __OPENCV_CUDA_UTILITY_HPP__
#include "saturate_cast.hpp"
#include "datamov_utils.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
#define OPENCV_CUDA_LOG_WARP_SIZE (5)
#define OPENCV_CUDA_WARP_SIZE (1 << OPENCV_CUDA_LOG_WARP_SIZE)
#define OPENCV_CUDA_LOG_MEM_BANKS ((__CUDA_ARCH__ >= 200) ? 5 : 4) // 32 banks on fermi, 16 on tesla
#define OPENCV_CUDA_MEM_BANKS (1 << OPENCV_CUDA_LOG_MEM_BANKS)
///////////////////////////////////////////////////////////////////////////////
// swap
template <typename T> void __device__ __host__ __forceinline__ swap(T& a, T& b)
{
const T temp = a;
a = b;
b = temp;
}
///////////////////////////////////////////////////////////////////////////////
// Mask Reader
struct SingleMask
{
explicit __host__ __device__ __forceinline__ SingleMask(PtrStepb mask_) : mask(mask_) {}
__host__ __device__ __forceinline__ SingleMask(const SingleMask& mask_): mask(mask_.mask){}
__device__ __forceinline__ bool operator()(int y, int x) const
{
return mask.ptr(y)[x] != 0;
}
PtrStepb mask;
};
struct SingleMaskChannels
{
__host__ __device__ __forceinline__ SingleMaskChannels(PtrStepb mask_, int channels_)
: mask(mask_), channels(channels_) {}
__host__ __device__ __forceinline__ SingleMaskChannels(const SingleMaskChannels& mask_)
:mask(mask_.mask), channels(mask_.channels){}
__device__ __forceinline__ bool operator()(int y, int x) const
{
return mask.ptr(y)[x / channels] != 0;
}
PtrStepb mask;
int channels;
};
struct MaskCollection
{
explicit __host__ __device__ __forceinline__ MaskCollection(PtrStepb* maskCollection_)
: maskCollection(maskCollection_) {}
__device__ __forceinline__ MaskCollection(const MaskCollection& masks_)
: maskCollection(masks_.maskCollection), curMask(masks_.curMask){}
__device__ __forceinline__ void next()
{
curMask = *maskCollection++;
}
__device__ __forceinline__ void setMask(int z)
{
curMask = maskCollection[z];
}
__device__ __forceinline__ bool operator()(int y, int x) const
{
uchar val;
return curMask.data == 0 || (ForceGlob<uchar>::Load(curMask.ptr(y), x, val), (val != 0));
}
const PtrStepb* maskCollection;
PtrStepb curMask;
};
struct WithOutMask
{
__host__ __device__ __forceinline__ WithOutMask(){}
__host__ __device__ __forceinline__ WithOutMask(const WithOutMask&){}
__device__ __forceinline__ void next() const
{
}
__device__ __forceinline__ void setMask(int) const
{
}
__device__ __forceinline__ bool operator()(int, int) const
{
return true;
}
__device__ __forceinline__ bool operator()(int, int, int) const
{
return true;
}
static __device__ __forceinline__ bool check(int, int)
{
return true;
}
static __device__ __forceinline__ bool check(int, int, int)
{
return true;
}
};
///////////////////////////////////////////////////////////////////////////////
// Solve linear system
// solve 2x2 linear system Ax=b
template <typename T> __device__ __forceinline__ bool solve2x2(const T A[2][2], const T b[2], T x[2])
{
T det = A[0][0] * A[1][1] - A[1][0] * A[0][1];
if (det != 0)
{
double invdet = 1.0 / det;
x[0] = saturate_cast<T>(invdet * (b[0] * A[1][1] - b[1] * A[0][1]));
x[1] = saturate_cast<T>(invdet * (A[0][0] * b[1] - A[1][0] * b[0]));
return true;
}
return false;
}
// solve 3x3 linear system Ax=b
template <typename T> __device__ __forceinline__ bool solve3x3(const T A[3][3], const T b[3], T x[3])
{
T det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1])
- A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0])
+ A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]);
if (det != 0)
{
double invdet = 1.0 / det;
x[0] = saturate_cast<T>(invdet *
(b[0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) -
A[0][1] * (b[1] * A[2][2] - A[1][2] * b[2] ) +
A[0][2] * (b[1] * A[2][1] - A[1][1] * b[2] )));
x[1] = saturate_cast<T>(invdet *
(A[0][0] * (b[1] * A[2][2] - A[1][2] * b[2] ) -
b[0] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) +
A[0][2] * (A[1][0] * b[2] - b[1] * A[2][0])));
x[2] = saturate_cast<T>(invdet *
(A[0][0] * (A[1][1] * b[2] - b[1] * A[2][1]) -
A[0][1] * (A[1][0] * b[2] - b[1] * A[2][0]) +
b[0] * (A[1][0] * A[2][1] - A[1][1] * A[2][0])));
return true;
}
return false;
}
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_UTILITY_HPP__

View File

@ -0,0 +1,232 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_VEC_DISTANCE_HPP__
#define __OPENCV_CUDA_VEC_DISTANCE_HPP__
#include "reduce.hpp"
#include "functional.hpp"
#include "detail/vec_distance_detail.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <typename T> struct L1Dist
{
typedef int value_type;
typedef int result_type;
__device__ __forceinline__ L1Dist() : mySum(0) {}
__device__ __forceinline__ void reduceIter(int val1, int val2)
{
mySum = __sad(val1, val2, mySum);
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<int>());
}
__device__ __forceinline__ operator int() const
{
return mySum;
}
int mySum;
};
template <> struct L1Dist<float>
{
typedef float value_type;
typedef float result_type;
__device__ __forceinline__ L1Dist() : mySum(0.0f) {}
__device__ __forceinline__ void reduceIter(float val1, float val2)
{
mySum += ::fabs(val1 - val2);
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<float>());
}
__device__ __forceinline__ operator float() const
{
return mySum;
}
float mySum;
};
struct L2Dist
{
typedef float value_type;
typedef float result_type;
__device__ __forceinline__ L2Dist() : mySum(0.0f) {}
__device__ __forceinline__ void reduceIter(float val1, float val2)
{
float reg = val1 - val2;
mySum += reg * reg;
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<float>());
}
__device__ __forceinline__ operator float() const
{
return sqrtf(mySum);
}
float mySum;
};
struct HammingDist
{
typedef int value_type;
typedef int result_type;
__device__ __forceinline__ HammingDist() : mySum(0) {}
__device__ __forceinline__ void reduceIter(int val1, int val2)
{
mySum += __popc(val1 ^ val2);
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<int>());
}
__device__ __forceinline__ operator int() const
{
return mySum;
}
int mySum;
};
// calc distance between two vectors in global memory
template <int THREAD_DIM, typename Dist, typename T1, typename T2>
__device__ void calcVecDiffGlobal(const T1* vec1, const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid)
{
for (int i = tid; i < len; i += THREAD_DIM)
{
T1 val1;
ForceGlob<T1>::Load(vec1, i, val1);
T2 val2;
ForceGlob<T2>::Load(vec2, i, val2);
dist.reduceIter(val1, val2);
}
dist.reduceAll<THREAD_DIM>(smem, tid);
}
// calc distance between two vectors, first vector is cached in register or shared memory, second vector is in global memory
template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T1, typename T2>
__device__ __forceinline__ void calcVecDiffCached(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, typename Dist::result_type* smem, int tid)
{
vec_distance_detail::VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>::calc(vecCached, vecGlob, len, dist, tid);
dist.reduceAll<THREAD_DIM>(smem, tid);
}
// calc distance between two vectors in global memory
template <int THREAD_DIM, typename T1> struct VecDiffGlobal
{
explicit __device__ __forceinline__ VecDiffGlobal(const T1* vec1_, int = 0, void* = 0, int = 0, int = 0)
{
vec1 = vec1_;
}
template <typename T2, typename Dist>
__device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const
{
calcVecDiffGlobal<THREAD_DIM>(vec1, vec2, len, dist, smem, tid);
}
const T1* vec1;
};
// calc distance between two vectors, first vector is cached in register memory, second vector is in global memory
template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename U> struct VecDiffCachedRegister
{
template <typename T1> __device__ __forceinline__ VecDiffCachedRegister(const T1* vec1, int len, U* smem, int glob_tid, int tid)
{
if (glob_tid < len)
smem[glob_tid] = vec1[glob_tid];
__syncthreads();
U* vec1ValsPtr = vec1Vals;
#pragma unroll
for (int i = tid; i < MAX_LEN; i += THREAD_DIM)
*vec1ValsPtr++ = smem[i];
__syncthreads();
}
template <typename T2, typename Dist>
__device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const
{
calcVecDiffCached<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>(vec1Vals, vec2, len, dist, smem, tid);
}
U vec1Vals[MAX_LEN / THREAD_DIM];
};
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_VEC_DISTANCE_HPP__

View File

@ -0,0 +1,930 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_VECMATH_HPP__
#define __OPENCV_CUDA_VECMATH_HPP__
#include "vec_traits.hpp"
#include "saturate_cast.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
// saturate_cast
namespace vec_math_detail
{
template <int cn, typename VecD> struct SatCastHelper;
template <typename VecD> struct SatCastHelper<1, VecD>
{
template <typename VecS> static __device__ __forceinline__ VecD cast(const VecS& v)
{
typedef typename VecTraits<VecD>::elem_type D;
return VecTraits<VecD>::make(saturate_cast<D>(v.x));
}
};
template <typename VecD> struct SatCastHelper<2, VecD>
{
template <typename VecS> static __device__ __forceinline__ VecD cast(const VecS& v)
{
typedef typename VecTraits<VecD>::elem_type D;
return VecTraits<VecD>::make(saturate_cast<D>(v.x), saturate_cast<D>(v.y));
}
};
template <typename VecD> struct SatCastHelper<3, VecD>
{
template <typename VecS> static __device__ __forceinline__ VecD cast(const VecS& v)
{
typedef typename VecTraits<VecD>::elem_type D;
return VecTraits<VecD>::make(saturate_cast<D>(v.x), saturate_cast<D>(v.y), saturate_cast<D>(v.z));
}
};
template <typename VecD> struct SatCastHelper<4, VecD>
{
template <typename VecS> static __device__ __forceinline__ VecD cast(const VecS& v)
{
typedef typename VecTraits<VecD>::elem_type D;
return VecTraits<VecD>::make(saturate_cast<D>(v.x), saturate_cast<D>(v.y), saturate_cast<D>(v.z), saturate_cast<D>(v.w));
}
};
template <typename VecD, typename VecS> static __device__ __forceinline__ VecD saturate_cast_helper(const VecS& v)
{
return SatCastHelper<VecTraits<VecD>::cn, VecD>::cast(v);
}
}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uchar1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const char1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const ushort1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const short1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uint1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const int1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const float1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const double1& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uchar2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const char2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const ushort2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const short2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uint2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const int2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const float2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const double2& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uchar3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const char3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const ushort3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const short3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uint3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const int3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const float3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const double3& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uchar4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const char4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const ushort4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const short4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const uint4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const int4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const float4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
template<typename T> static __device__ __forceinline__ T saturate_cast(const double4& v) {return vec_math_detail::saturate_cast_helper<T>(v);}
// unary operators
#define CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(op, input_type, output_type) \
__device__ __forceinline__ output_type ## 1 operator op(const input_type ## 1 & a) \
{ \
return VecTraits<output_type ## 1>::make(op (a.x)); \
} \
__device__ __forceinline__ output_type ## 2 operator op(const input_type ## 2 & a) \
{ \
return VecTraits<output_type ## 2>::make(op (a.x), op (a.y)); \
} \
__device__ __forceinline__ output_type ## 3 operator op(const input_type ## 3 & a) \
{ \
return VecTraits<output_type ## 3>::make(op (a.x), op (a.y), op (a.z)); \
} \
__device__ __forceinline__ output_type ## 4 operator op(const input_type ## 4 & a) \
{ \
return VecTraits<output_type ## 4>::make(op (a.x), op (a.y), op (a.z), op (a.w)); \
}
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, char, char)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, short, short)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, int, int)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, char, char)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, ushort, ushort)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, short, short)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, int, int)
CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, uint, uint)
#undef CV_CUDEV_IMPLEMENT_VEC_UNARY_OP
// unary functions
#define CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(func_name, func, input_type, output_type) \
__device__ __forceinline__ output_type ## 1 func_name(const input_type ## 1 & a) \
{ \
return VecTraits<output_type ## 1>::make(func (a.x)); \
} \
__device__ __forceinline__ output_type ## 2 func_name(const input_type ## 2 & a) \
{ \
return VecTraits<output_type ## 2>::make(func (a.x), func (a.y)); \
} \
__device__ __forceinline__ output_type ## 3 func_name(const input_type ## 3 & a) \
{ \
return VecTraits<output_type ## 3>::make(func (a.x), func (a.y), func (a.z)); \
} \
__device__ __forceinline__ output_type ## 4 func_name(const input_type ## 4 & a) \
{ \
return VecTraits<output_type ## 4>::make(func (a.x), func (a.y), func (a.z), func (a.w)); \
}
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, /*::abs*/, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::abs, char, char)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, /*::abs*/, ushort, ushort)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::abs, short, short)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::abs, int, int)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, /*::abs*/, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::fabsf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::fabs, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrt, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::exp, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::log, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sin, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cos, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tan, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asin, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acos, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atan, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinh, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::cosh, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanh, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinh, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acosh, double, double)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, char, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, short, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, int, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, float, float)
CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanh, double, double)
#undef CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC
// binary operators (vec & vec)
#define CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(op, input_type, output_type) \
__device__ __forceinline__ output_type ## 1 operator op(const input_type ## 1 & a, const input_type ## 1 & b) \
{ \
return VecTraits<output_type ## 1>::make(a.x op b.x); \
} \
__device__ __forceinline__ output_type ## 2 operator op(const input_type ## 2 & a, const input_type ## 2 & b) \
{ \
return VecTraits<output_type ## 2>::make(a.x op b.x, a.y op b.y); \
} \
__device__ __forceinline__ output_type ## 3 operator op(const input_type ## 3 & a, const input_type ## 3 & b) \
{ \
return VecTraits<output_type ## 3>::make(a.x op b.x, a.y op b.y, a.z op b.z); \
} \
__device__ __forceinline__ output_type ## 4 operator op(const input_type ## 4 & a, const input_type ## 4 & b) \
{ \
return VecTraits<output_type ## 4>::make(a.x op b.x, a.y op b.y, a.z op b.z, a.w op b.w); \
}
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, uchar, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, char, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, ushort, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, short, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, double, double)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, uchar, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, char, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, ushort, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, short, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, double, double)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, uchar, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, char, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, ushort, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, short, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, double, double)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, uchar, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, char, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, ushort, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, short, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, double, double)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, char, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, ushort, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, short, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, int, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, uint, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, float, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, double, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, char, char)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, ushort, ushort)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, short, short)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, char, char)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, ushort, ushort)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, short, short)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, char, char)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, ushort, ushort)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, short, short)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, uint, uint)
#undef CV_CUDEV_IMPLEMENT_VEC_BINARY_OP
// binary operators (vec & scalar)
#define CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(op, input_type, scalar_type, output_type) \
__device__ __forceinline__ output_type ## 1 operator op(const input_type ## 1 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 1>::make(a.x op s); \
} \
__device__ __forceinline__ output_type ## 1 operator op(scalar_type s, const input_type ## 1 & b) \
{ \
return VecTraits<output_type ## 1>::make(s op b.x); \
} \
__device__ __forceinline__ output_type ## 2 operator op(const input_type ## 2 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 2>::make(a.x op s, a.y op s); \
} \
__device__ __forceinline__ output_type ## 2 operator op(scalar_type s, const input_type ## 2 & b) \
{ \
return VecTraits<output_type ## 2>::make(s op b.x, s op b.y); \
} \
__device__ __forceinline__ output_type ## 3 operator op(const input_type ## 3 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 3>::make(a.x op s, a.y op s, a.z op s); \
} \
__device__ __forceinline__ output_type ## 3 operator op(scalar_type s, const input_type ## 3 & b) \
{ \
return VecTraits<output_type ## 3>::make(s op b.x, s op b.y, s op b.z); \
} \
__device__ __forceinline__ output_type ## 4 operator op(const input_type ## 4 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 4>::make(a.x op s, a.y op s, a.z op s, a.w op s); \
} \
__device__ __forceinline__ output_type ## 4 operator op(scalar_type s, const input_type ## 4 & b) \
{ \
return VecTraits<output_type ## 4>::make(s op b.x, s op b.y, s op b.z, s op b.w); \
}
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uchar, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, char, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, ushort, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, short, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, double, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uchar, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, char, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, ushort, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, short, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, double, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uchar, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, char, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, ushort, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, short, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, double, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uchar, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, char, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, ushort, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, short, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, double, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, char, char, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, ushort, ushort, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, short, short, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, int, int, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, uint, uint, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, float, float, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, double, double, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, char, char, char)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, ushort, ushort, ushort)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, short, short, short)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, char, char, char)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, ushort, ushort, ushort)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, short, short, short)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, char, char, char)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, ushort, ushort, ushort)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, short, short, short)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, uint, uint, uint)
#undef CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP
// binary function (vec & vec)
#define CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(func_name, func, input_type, output_type) \
__device__ __forceinline__ output_type ## 1 func_name(const input_type ## 1 & a, const input_type ## 1 & b) \
{ \
return VecTraits<output_type ## 1>::make(func (a.x, b.x)); \
} \
__device__ __forceinline__ output_type ## 2 func_name(const input_type ## 2 & a, const input_type ## 2 & b) \
{ \
return VecTraits<output_type ## 2>::make(func (a.x, b.x), func (a.y, b.y)); \
} \
__device__ __forceinline__ output_type ## 3 func_name(const input_type ## 3 & a, const input_type ## 3 & b) \
{ \
return VecTraits<output_type ## 3>::make(func (a.x, b.x), func (a.y, b.y), func (a.z, b.z)); \
} \
__device__ __forceinline__ output_type ## 4 func_name(const input_type ## 4 & a, const input_type ## 4 & b) \
{ \
return VecTraits<output_type ## 4>::make(func (a.x, b.x), func (a.y, b.y), func (a.z, b.z), func (a.w, b.w)); \
}
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, char, char)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, ushort, ushort)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, short, short)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::fmaxf, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::fmax, double, double)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, uchar, uchar)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, char, char)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, ushort, ushort)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, short, short)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, uint, uint)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, int, int)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::fminf, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::fmin, double, double)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, char, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, short, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, uint, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, int, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypot, double, double)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, uchar, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, char, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, ushort, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, short, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, uint, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, int, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, float, float)
CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2, double, double)
#undef CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC
// binary function (vec & scalar)
#define CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(func_name, func, input_type, scalar_type, output_type) \
__device__ __forceinline__ output_type ## 1 func_name(const input_type ## 1 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 1>::make(func ((output_type) a.x, (output_type) s)); \
} \
__device__ __forceinline__ output_type ## 1 func_name(scalar_type s, const input_type ## 1 & b) \
{ \
return VecTraits<output_type ## 1>::make(func ((output_type) s, (output_type) b.x)); \
} \
__device__ __forceinline__ output_type ## 2 func_name(const input_type ## 2 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 2>::make(func ((output_type) a.x, (output_type) s), func ((output_type) a.y, (output_type) s)); \
} \
__device__ __forceinline__ output_type ## 2 func_name(scalar_type s, const input_type ## 2 & b) \
{ \
return VecTraits<output_type ## 2>::make(func ((output_type) s, (output_type) b.x), func ((output_type) s, (output_type) b.y)); \
} \
__device__ __forceinline__ output_type ## 3 func_name(const input_type ## 3 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 3>::make(func ((output_type) a.x, (output_type) s), func ((output_type) a.y, (output_type) s), func ((output_type) a.z, (output_type) s)); \
} \
__device__ __forceinline__ output_type ## 3 func_name(scalar_type s, const input_type ## 3 & b) \
{ \
return VecTraits<output_type ## 3>::make(func ((output_type) s, (output_type) b.x), func ((output_type) s, (output_type) b.y), func ((output_type) s, (output_type) b.z)); \
} \
__device__ __forceinline__ output_type ## 4 func_name(const input_type ## 4 & a, scalar_type s) \
{ \
return VecTraits<output_type ## 4>::make(func ((output_type) a.x, (output_type) s), func ((output_type) a.y, (output_type) s), func ((output_type) a.z, (output_type) s), func ((output_type) a.w, (output_type) s)); \
} \
__device__ __forceinline__ output_type ## 4 func_name(scalar_type s, const input_type ## 4 & b) \
{ \
return VecTraits<output_type ## 4>::make(func ((output_type) s, (output_type) b.x), func ((output_type) s, (output_type) b.y), func ((output_type) s, (output_type) b.z), func ((output_type) s, (output_type) b.w)); \
}
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, char, char, char)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, ushort, ushort, ushort)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, short, short, short)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, double, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, uchar, uchar, uchar)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, char, char, char)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, ushort, ushort, ushort)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, short, short, short)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, uint, uint, uint)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, int, int, int)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, double, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, double, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, uchar, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, uchar, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, char, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, char, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, ushort, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, ushort, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, short, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, short, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, uint, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, uint, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, int, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, int, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, float, float, float)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, float, double, double)
CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, double, double, double)
#undef CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC
}}} // namespace cv { namespace cuda { namespace device
//! @endcond
#endif // __OPENCV_CUDA_VECMATH_HPP__

View File

@ -0,0 +1,288 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_VEC_TRAITS_HPP__
#define __OPENCV_CUDA_VEC_TRAITS_HPP__
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template<typename T, int N> struct TypeVec;
struct __align__(8) uchar8
{
uchar a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ uchar8 make_uchar8(uchar a0, uchar a1, uchar a2, uchar a3, uchar a4, uchar a5, uchar a6, uchar a7)
{
uchar8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
struct __align__(8) char8
{
schar a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ char8 make_char8(schar a0, schar a1, schar a2, schar a3, schar a4, schar a5, schar a6, schar a7)
{
char8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
struct __align__(16) ushort8
{
ushort a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ ushort8 make_ushort8(ushort a0, ushort a1, ushort a2, ushort a3, ushort a4, ushort a5, ushort a6, ushort a7)
{
ushort8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
struct __align__(16) short8
{
short a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ short8 make_short8(short a0, short a1, short a2, short a3, short a4, short a5, short a6, short a7)
{
short8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
struct __align__(32) uint8
{
uint a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ uint8 make_uint8(uint a0, uint a1, uint a2, uint a3, uint a4, uint a5, uint a6, uint a7)
{
uint8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
struct __align__(32) int8
{
int a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ int8 make_int8(int a0, int a1, int a2, int a3, int a4, int a5, int a6, int a7)
{
int8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
struct __align__(32) float8
{
float a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ float8 make_float8(float a0, float a1, float a2, float a3, float a4, float a5, float a6, float a7)
{
float8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
struct double8
{
double a0, a1, a2, a3, a4, a5, a6, a7;
};
static __host__ __device__ __forceinline__ double8 make_double8(double a0, double a1, double a2, double a3, double a4, double a5, double a6, double a7)
{
double8 val = {a0, a1, a2, a3, a4, a5, a6, a7};
return val;
}
#define OPENCV_CUDA_IMPLEMENT_TYPE_VEC(type) \
template<> struct TypeVec<type, 1> { typedef type vec_type; }; \
template<> struct TypeVec<type ## 1, 1> { typedef type ## 1 vec_type; }; \
template<> struct TypeVec<type, 2> { typedef type ## 2 vec_type; }; \
template<> struct TypeVec<type ## 2, 2> { typedef type ## 2 vec_type; }; \
template<> struct TypeVec<type, 3> { typedef type ## 3 vec_type; }; \
template<> struct TypeVec<type ## 3, 3> { typedef type ## 3 vec_type; }; \
template<> struct TypeVec<type, 4> { typedef type ## 4 vec_type; }; \
template<> struct TypeVec<type ## 4, 4> { typedef type ## 4 vec_type; }; \
template<> struct TypeVec<type, 8> { typedef type ## 8 vec_type; }; \
template<> struct TypeVec<type ## 8, 8> { typedef type ## 8 vec_type; };
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(uchar)
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(char)
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(ushort)
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(short)
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(int)
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(uint)
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(float)
OPENCV_CUDA_IMPLEMENT_TYPE_VEC(double)
#undef OPENCV_CUDA_IMPLEMENT_TYPE_VEC
template<> struct TypeVec<schar, 1> { typedef schar vec_type; };
template<> struct TypeVec<schar, 2> { typedef char2 vec_type; };
template<> struct TypeVec<schar, 3> { typedef char3 vec_type; };
template<> struct TypeVec<schar, 4> { typedef char4 vec_type; };
template<> struct TypeVec<schar, 8> { typedef char8 vec_type; };
template<> struct TypeVec<bool, 1> { typedef uchar vec_type; };
template<> struct TypeVec<bool, 2> { typedef uchar2 vec_type; };
template<> struct TypeVec<bool, 3> { typedef uchar3 vec_type; };
template<> struct TypeVec<bool, 4> { typedef uchar4 vec_type; };
template<> struct TypeVec<bool, 8> { typedef uchar8 vec_type; };
template<typename T> struct VecTraits;
#define OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(type) \
template<> struct VecTraits<type> \
{ \
typedef type elem_type; \
enum {cn=1}; \
static __device__ __host__ __forceinline__ type all(type v) {return v;} \
static __device__ __host__ __forceinline__ type make(type x) {return x;} \
static __device__ __host__ __forceinline__ type make(const type* v) {return *v;} \
}; \
template<> struct VecTraits<type ## 1> \
{ \
typedef type elem_type; \
enum {cn=1}; \
static __device__ __host__ __forceinline__ type ## 1 all(type v) {return make_ ## type ## 1(v);} \
static __device__ __host__ __forceinline__ type ## 1 make(type x) {return make_ ## type ## 1(x);} \
static __device__ __host__ __forceinline__ type ## 1 make(const type* v) {return make_ ## type ## 1(*v);} \
}; \
template<> struct VecTraits<type ## 2> \
{ \
typedef type elem_type; \
enum {cn=2}; \
static __device__ __host__ __forceinline__ type ## 2 all(type v) {return make_ ## type ## 2(v, v);} \
static __device__ __host__ __forceinline__ type ## 2 make(type x, type y) {return make_ ## type ## 2(x, y);} \
static __device__ __host__ __forceinline__ type ## 2 make(const type* v) {return make_ ## type ## 2(v[0], v[1]);} \
}; \
template<> struct VecTraits<type ## 3> \
{ \
typedef type elem_type; \
enum {cn=3}; \
static __device__ __host__ __forceinline__ type ## 3 all(type v) {return make_ ## type ## 3(v, v, v);} \
static __device__ __host__ __forceinline__ type ## 3 make(type x, type y, type z) {return make_ ## type ## 3(x, y, z);} \
static __device__ __host__ __forceinline__ type ## 3 make(const type* v) {return make_ ## type ## 3(v[0], v[1], v[2]);} \
}; \
template<> struct VecTraits<type ## 4> \
{ \
typedef type elem_type; \
enum {cn=4}; \
static __device__ __host__ __forceinline__ type ## 4 all(type v) {return make_ ## type ## 4(v, v, v, v);} \
static __device__ __host__ __forceinline__ type ## 4 make(type x, type y, type z, type w) {return make_ ## type ## 4(x, y, z, w);} \
static __device__ __host__ __forceinline__ type ## 4 make(const type* v) {return make_ ## type ## 4(v[0], v[1], v[2], v[3]);} \
}; \
template<> struct VecTraits<type ## 8> \
{ \
typedef type elem_type; \
enum {cn=8}; \
static __device__ __host__ __forceinline__ type ## 8 all(type v) {return make_ ## type ## 8(v, v, v, v, v, v, v, v);} \
static __device__ __host__ __forceinline__ type ## 8 make(type a0, type a1, type a2, type a3, type a4, type a5, type a6, type a7) {return make_ ## type ## 8(a0, a1, a2, a3, a4, a5, a6, a7);} \
static __device__ __host__ __forceinline__ type ## 8 make(const type* v) {return make_ ## type ## 8(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);} \
};
OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(uchar)
OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(ushort)
OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(short)
OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(int)
OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(uint)
OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(float)
OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(double)
#undef OPENCV_CUDA_IMPLEMENT_VEC_TRAITS
template<> struct VecTraits<char>
{
typedef char elem_type;
enum {cn=1};
static __device__ __host__ __forceinline__ char all(char v) {return v;}
static __device__ __host__ __forceinline__ char make(char x) {return x;}
static __device__ __host__ __forceinline__ char make(const char* x) {return *x;}
};
template<> struct VecTraits<schar>
{
typedef schar elem_type;
enum {cn=1};
static __device__ __host__ __forceinline__ schar all(schar v) {return v;}
static __device__ __host__ __forceinline__ schar make(schar x) {return x;}
static __device__ __host__ __forceinline__ schar make(const schar* x) {return *x;}
};
template<> struct VecTraits<char1>
{
typedef schar elem_type;
enum {cn=1};
static __device__ __host__ __forceinline__ char1 all(schar v) {return make_char1(v);}
static __device__ __host__ __forceinline__ char1 make(schar x) {return make_char1(x);}
static __device__ __host__ __forceinline__ char1 make(const schar* v) {return make_char1(v[0]);}
};
template<> struct VecTraits<char2>
{
typedef schar elem_type;
enum {cn=2};
static __device__ __host__ __forceinline__ char2 all(schar v) {return make_char2(v, v);}
static __device__ __host__ __forceinline__ char2 make(schar x, schar y) {return make_char2(x, y);}
static __device__ __host__ __forceinline__ char2 make(const schar* v) {return make_char2(v[0], v[1]);}
};
template<> struct VecTraits<char3>
{
typedef schar elem_type;
enum {cn=3};
static __device__ __host__ __forceinline__ char3 all(schar v) {return make_char3(v, v, v);}
static __device__ __host__ __forceinline__ char3 make(schar x, schar y, schar z) {return make_char3(x, y, z);}
static __device__ __host__ __forceinline__ char3 make(const schar* v) {return make_char3(v[0], v[1], v[2]);}
};
template<> struct VecTraits<char4>
{
typedef schar elem_type;
enum {cn=4};
static __device__ __host__ __forceinline__ char4 all(schar v) {return make_char4(v, v, v, v);}
static __device__ __host__ __forceinline__ char4 make(schar x, schar y, schar z, schar w) {return make_char4(x, y, z, w);}
static __device__ __host__ __forceinline__ char4 make(const schar* v) {return make_char4(v[0], v[1], v[2], v[3]);}
};
template<> struct VecTraits<char8>
{
typedef schar elem_type;
enum {cn=8};
static __device__ __host__ __forceinline__ char8 all(schar v) {return make_char8(v, v, v, v, v, v, v, v);}
static __device__ __host__ __forceinline__ char8 make(schar a0, schar a1, schar a2, schar a3, schar a4, schar a5, schar a6, schar a7) {return make_char8(a0, a1, a2, a3, a4, a5, a6, a7);}
static __device__ __host__ __forceinline__ char8 make(const schar* v) {return make_char8(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);}
};
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // __OPENCV_CUDA_VEC_TRAITS_HPP__

View File

@ -0,0 +1,139 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_DEVICE_WARP_HPP__
#define __OPENCV_CUDA_DEVICE_WARP_HPP__
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
struct Warp
{
enum
{
LOG_WARP_SIZE = 5,
WARP_SIZE = 1 << LOG_WARP_SIZE,
STRIDE = WARP_SIZE
};
/** \brief Returns the warp lane ID of the calling thread. */
static __device__ __forceinline__ unsigned int laneId()
{
unsigned int ret;
asm("mov.u32 %0, %laneid;" : "=r"(ret) );
return ret;
}
template<typename It, typename T>
static __device__ __forceinline__ void fill(It beg, It end, const T& value)
{
for(It t = beg + laneId(); t < end; t += STRIDE)
*t = value;
}
template<typename InIt, typename OutIt>
static __device__ __forceinline__ OutIt copy(InIt beg, InIt end, OutIt out)
{
for(InIt t = beg + laneId(); t < end; t += STRIDE, out += STRIDE)
*out = *t;
return out;
}
template<typename InIt, typename OutIt, class UnOp>
static __device__ __forceinline__ OutIt transform(InIt beg, InIt end, OutIt out, UnOp op)
{
for(InIt t = beg + laneId(); t < end; t += STRIDE, out += STRIDE)
*out = op(*t);
return out;
}
template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
static __device__ __forceinline__ OutIt transform(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
{
unsigned int lane = laneId();
InIt1 t1 = beg1 + lane;
InIt2 t2 = beg2 + lane;
for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, out += STRIDE)
*out = op(*t1, *t2);
return out;
}
template <class T, class BinOp>
static __device__ __forceinline__ T reduce(volatile T *ptr, BinOp op)
{
const unsigned int lane = laneId();
if (lane < 16)
{
T partial = ptr[lane];
ptr[lane] = partial = op(partial, ptr[lane + 16]);
ptr[lane] = partial = op(partial, ptr[lane + 8]);
ptr[lane] = partial = op(partial, ptr[lane + 4]);
ptr[lane] = partial = op(partial, ptr[lane + 2]);
ptr[lane] = partial = op(partial, ptr[lane + 1]);
}
return *ptr;
}
template<typename OutIt, typename T>
static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
{
unsigned int lane = laneId();
value += lane;
for(OutIt t = beg + lane; t < end; t += STRIDE, value += STRIDE)
*t = value;
}
};
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif /* __OPENCV_CUDA_DEVICE_WARP_HPP__ */

View File

@ -0,0 +1,76 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_WARP_REDUCE_HPP__
#define OPENCV_CUDA_WARP_REDUCE_HPP__
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <class T>
__device__ __forceinline__ T warp_reduce(volatile T *ptr , const unsigned int tid = threadIdx.x)
{
const unsigned int lane = tid & 31; // index of thread in warp (0..31)
if (lane < 16)
{
T partial = ptr[tid];
ptr[tid] = partial = partial + ptr[tid + 16];
ptr[tid] = partial = partial + ptr[tid + 8];
ptr[tid] = partial = partial + ptr[tid + 4];
ptr[tid] = partial = partial + ptr[tid + 2];
ptr[tid] = partial = partial + ptr[tid + 1];
}
return ptr[tid - lane];
}
}}} // namespace cv { namespace cuda { namespace cudev {
//! @endcond
#endif /* OPENCV_CUDA_WARP_REDUCE_HPP__ */

View File

@ -0,0 +1,153 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDA_WARP_SHUFFLE_HPP__
#define __OPENCV_CUDA_WARP_SHUFFLE_HPP__
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <typename T>
__device__ __forceinline__ T shfl(T val, int srcLane, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return __shfl(val, srcLane, width);
#else
return T();
#endif
}
__device__ __forceinline__ unsigned int shfl(unsigned int val, int srcLane, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return (unsigned int) __shfl((int) val, srcLane, width);
#else
return 0;
#endif
}
__device__ __forceinline__ double shfl(double val, int srcLane, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
int lo = __double2loint(val);
int hi = __double2hiint(val);
lo = __shfl(lo, srcLane, width);
hi = __shfl(hi, srcLane, width);
return __hiloint2double(hi, lo);
#else
return 0.0;
#endif
}
template <typename T>
__device__ __forceinline__ T shfl_down(T val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return __shfl_down(val, delta, width);
#else
return T();
#endif
}
__device__ __forceinline__ unsigned int shfl_down(unsigned int val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return (unsigned int) __shfl_down((int) val, delta, width);
#else
return 0;
#endif
}
__device__ __forceinline__ double shfl_down(double val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
int lo = __double2loint(val);
int hi = __double2hiint(val);
lo = __shfl_down(lo, delta, width);
hi = __shfl_down(hi, delta, width);
return __hiloint2double(hi, lo);
#else
return 0.0;
#endif
}
template <typename T>
__device__ __forceinline__ T shfl_up(T val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return __shfl_up(val, delta, width);
#else
return T();
#endif
}
__device__ __forceinline__ unsigned int shfl_up(unsigned int val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return (unsigned int) __shfl_up((int) val, delta, width);
#else
return 0;
#endif
}
__device__ __forceinline__ double shfl_up(double val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
int lo = __double2loint(val);
int hi = __double2hiint(val);
lo = __shfl_up(lo, delta, width);
hi = __shfl_up(hi, delta, width);
return __hiloint2double(hi, lo);
#else
return 0.0;
#endif
}
}}}
//! @endcond
#endif // __OPENCV_CUDA_WARP_SHUFFLE_HPP__