You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

325 lines
9.4 KiB

# About this Project
This project is being developed as a practical part of bachelor's thesis at Brno Universtiy of Technology - Faculty of Information Studies. It is as of now a work in progress, no results guaranteed.
The topic of this thesis is Generating a 3D Fingerprint Model. This application can be used to apply series of image processing filters to a fingerprint image to make it more suitable for conversion to 3D stl model and printing.
It also includes the functionality to use generated image as a height map for generating an stl model.
This model can either be planar or curved.
# Prerequisites
For now this is only viable for ubuntu gnu/linux machines
Before cloning repository, you need these to succesfully use the application.
* python version 3.10 is a requirement might work on earlier python 3 versions
```sh
sudo apt install python3.10
```
* virtualenv for virtual enviroment creation
```sh
pip install virtualenv
```
# Installation
1. Go to a suitable installation folder, for example Documents.
```sh
cd /home/username/Documents
```
2. Clone the repository to a suitable directory, for example
```sh
git clone ssh://git@strade.fit.vutbr.cz:3022/xlanro00/BP_DP-xlanro00.git
```
3. Go inside cloned directory
```sh
cd BP_DP-xlanro00
```
4. Create and enter the virtual enviroment.
```sh
virtualenv .venv && source .venv/bin/activate
```
5. Install required python modules from requirements.txt.
```sh
pip install -r requirements.txt
```
6. Run the application, as an example there is a file in res/examples called Palec_P4.tif. This is shown in the section below.
# Filtering images
* You will need to enter the virtual enviroment every time you want to use the application.
```sh
source .venv/bin/activate
```
Once all the requirements are installed, the program is ready to use. There are two ways to enter the filters:
1. manually list filter names and parameters from command line
```sh
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_cline.png 600 total_variation weight=0.15 median ksize=5
```
2. from preset saved in a json config file, that can be used to tune and modify existing presetrs, or create new ones
```sh
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_preset.png 600 --config config/config.json git_example
```
# Configuration and presets
There is an option to input the filter series as a preset from json configuration file.
This preset is automatically stored inside a json file, which serves as a database for storing filters.
This prevents losing filter preset information when modifying filter which was used to generate 3D models.
<table style="width:100%;">
<thead>
<tr>
<th>General format</th>
<th>Woking example</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<pre><code class="language-json">
{
"preset": [
{
"name": "filter_name",
"parameter": value,
"parameter": value
},
{
"name": "filter_name",
"parameter": value
}
],
"preset": [
...
]
...
}
</code></pre>
</td>
<td>
<pre><code class="language-json">
{
"git_example": [
{
"name": "denoise_tv_chambolle",
"weight": 0.01,
"iterations": 1
},
{
"name": "median",
"ksize": 3
}
]
}
</code></pre>
</td>
</tr>
</tbody>
</table>
There is also an option to save current command line setting as a preset using -d switch:
* General command for saving filter preset
```sh
python3 src/main.py input_file output_file dpi -d new_preset_name filters
```
* Working example
```sh
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_cline.png 600 -d preset_gaussian gaussian sigma=1
```
All the filters used and their parameters are described below.
## Available filters with parameters
- median blur
- ksize - Kernel size (int)
- gaussian blur
- sigma - Gaussian kernel standart deviation (int)
- bilateral blur
- diameter - Diameter of pixel neighborhood used for filtering (int)
- sigmaColor - Standard deviation for grayvalue/color distance (int)
- sigmaSpace - Standard deviation for range distance in pixels (int)
- bilateral_scikit
- sigmaColor - Standard deviation for grayvalue/color distance (float)
- sigmaSpace - Standard deviation for range distance in pixels (float)
- nlmeans (non-local means)
- patch_size - Size of patches used for denoising (int)
- patch_distance - Distance in pixels where to search for patches (int)
- h - Cut-off distance, higher means more smoothed image (float)
- total_variation
- weight - Denoising weight. (float)
- block_match
- sigma - ? (?)
- unsharp mask scikit
- radius - Radius of the gaussian filter (int)
- amount - Strength of the unsharp mask (float)
- farid
- meijering
- sato
- hessian
- sigmas - ? (float)
- invert
- scale_values
- binarize
- threshold - value to cut differentiate pixels (int)
- maxval - maximal value (int) ??
- type - ? (str)
- binarize_otsu
- add_margin
- margin - number of pixels to add to the sides of the image (int)
- color - color value of newly added pixels (int)
- erode
- kernel - kernel shape (numpy.matrix)
- dilate
- kernel - kernel shape (numpy.matrix)
# Comparison
Image before processing the fingerprint and after applying a presets.
<table>
<thead>
<th>Before</th>
<th>After</th>
</thead>
<tbody>
<td><img src="res/examples_git/example-before.png?raw=true" width="400" /></td>
<td><img src="res/examples_git/example-after.png?raw=true" width="400" /></td>
</tbody>
</table>
# Generating curved finger model
It is possible to generate 3D printable stl model using `--stl` switch, which requires aditional parameter containing stl filename.
In base mode the output model will be a curved finger model, with optional parameters following the filename controlling its shape.
First optional parameter is papilar line height, second rate of curvature along x axis and the third is the rate of curvature along y axis.
* General form for curved stl generation
```sh
python3 src/main.py input_file output_file dpi --config config_file preset --stl c height_line height_base curvature_x curvature_y
```
* Working example curved stl generation
```sh
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_preset.png 600 --config config/config.json git_example --stl c 2 10 2 2
```
# Generating planar finger model
Using `-p` switch makes the generated model planar.
Optional parameters are model base thickness and papilar lines height, they are set after stl file name.
* General form for planar stl generation
```sh
python3 src/main.py input_file output_file dpi --config config_file preset --stl p height_line height_base
```
* Working example planar stl generation
```sh
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_preset.png 600 --config config/config.json git_example --stl p 2 10
```
# Mapping to existing finger model
This section will be added later, (if implemented) mapping of fingerprint to a given finger model.
* General form for planar stl generation
```sh
python3 src/main.py input_file output_file dpi --config config_file preset --stl m height_line height_base finger_file
```
# Usage
usage: main.py [-h] [-m | --mirror | --no-mirror] input_file output_file dpi ([-c | --config config_file preset] | [filters ...]) [-s | --stl_file p height_line height_base | --stl_file c height_line height_base curv_rate_x curv_rate_y | --stl_file m height_line height_base finger_file]
Program for processing a 2D image into 3D fingerprint.
positional arguments:
input_file input file path
output_file output file path
dpi dpi of used scanner
filters list of filter names and their parameters in form [filter_name1 param1=value
param2=value filter_name2 param1=value...]
options:
-h, --help show this help message and exit
-m, --mirror, --no-mirror
switch to mirror input image
-s [STL_FILE ...], --stl_file [STL_FILE ...]
create stl model from processed image
-c CONFIG CONFIG, --config CONFIG CONFIG
pair: name of the config file with presets, name of the preset
# Roadmap
- [x] Load and store image
- [x] Apply basic image processing filters
- [X] Scale the image using given dpi
- [X] Create filter library with more filters
- [X] Add more suitable filters to the library
- [x] Use presets from config files
- [ ] Add the option to save current filter preset to config file
- [X] Add the option to modify filter parameters
- [X] Convert the processed image to stl lithophane
- [X] Add the option to curve the lithophane into the shape of a finger
- [ ] Add the option to map the fingerprint onto a given finger model
- [X] Export final model ready for 3D print
#
### Author
Rostislav Lán - xlanro00@stud.fit.vutbr.cz
### Supervisor
Ing. Petr Malaník
### Links
Project Link: [https://strade.fit.vutbr.cz/git/xlanro00/BP_DP-xlanro00](https://strade.fit.vutbr.cz/git/xlanro00/BP_DP-xlanro00)