You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

457 lines
16 KiB

"""! @file main.py
@brief Main file for the application
@author xlanro00
"""
# Import basic libraries
import argparse as ap
import sys
import json
from os.path import exists
# Libraries for image processing
import numpy as np
import matplotlib.pyplot as plt
#from PIL import Image
import cv2 as cv
from stl import mesh
# Import custom image filter library
import filters as flt
class app:
def __init__(self):
# Parse arguments from command line
self.parse_arguments()
self.params = {}
self.filters = []
# Parse configuration from json file
if self.args.config:
self.config_file = self.args.config[0]
self.preset_name = self.args.config[1]
self.config = json.load(open(self.config_file))
self.parse_conf()
# If no config file given, expect filters in command line
else:
if not self.args.filters:
print("No filters given, saving original image")
print("No config file given, using command line arguments")
i = 0
for filter in self.args.filters:
if filter.find('=') == -1:
# if no '=' in filter, it is a new filter
self.filters.append(filter)
i += 1
self.params[i] = {} # create empty dict for params
else:
# else it's a parameter for current filter
key, value = filter.split('=')
self.params[i][key] = value
self.parse_params(self.params[i])
if self.args.stl_file and len(self.args.stl_file) == 3:
self.stl_file = self.args.stl_file[0]
self.height_line = float(self.args.stl_file[1])
self.height_base = float(self.args.stl_file[2])
self.mode = "2d"
elif self.args.stl_file and len(self.args.stl_file) == 2:
self.stl_file = self.args.stl_file[0]
self.height_line = float(self.args.stl_file[1])
self.mode = "3d"
else:
print("No STL file given, saving image only")
exit(1)
self.input_file = self.args.input_file
self.output_file = self.args.output_file
self.dpi = self.args.dpi
self.mirror = True if self.args.mirror else False
if exists(self.input_file):
self.run()
else:
print("Input file does not exist", file=sys.stderr)
exit(1)
def run(self):
# read as numpy.array
self.img = cv.imread(
self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8)
self.width = self.img.shape[1]
self.height = self.img.shape[0]
self.print_size(self.img.shape)
fig = plt.figure(figsize=(self.width/self.dpi, self.height/self.dpi),
frameon=False, dpi=self.dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
if self.mirror is True:
self.mirror_image()
# Apply all filters and save image
self.apply_filter()
self.save_image(fig, ax)
plt.close()
if self.args.stl_file:
self.make_model()
def parse_params(self, params):
''' Parse parameters of filters.
Set to None if not given.
They are later set in the filter method.
'''
possible_params = {"h", "searchWindowSize", "templateWindowSize",
"ksize", "kernel", "sigmaX", "sigmaY",
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
"op", "strength", "amount", "radius", "weight", "channelAxis"}
for key in possible_params:
if params.get(key) is None:
params[key] = None
else:
params[key] = params[key]
def parse_conf(self):
''' Parse configuration file if one was given and store filters with their parameters
'''
if self.preset_name in self.config:
filter_array = self.config[self.preset_name]
for i, filter in enumerate(range(len(filter_array)), start=1):
self.filters.append(filter_array[filter]["name"])
self.params[i] = {}
for attribute, value in filter_array[filter].items():
if attribute != "name":
self.params[i][attribute] = value
self.parse_params(self.params[i])
print("Loaded preset: " + self.preset_name +
" from file: " + self.config_file)
else:
print("Preset not found", file=sys.stderr)
def parse_arguments(self):
''' Parse arguments from command line
'''
parser = ap.ArgumentParser(prog='main.py',
description='Program for processing a 2D image into 3D fingerprint.',
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi \
([-c config_file preset | --config config_file preset] | [filters ...]) \
[-s stl_file | --stl_file stl_file depth_total depth_line]')
# positional arguments
parser.add_argument("input_file", type=str, help="location with input file")
parser.add_argument("output_file", type=str, help="output file location")
parser.add_argument("dpi", type=int, help="scanner dpi")
# boolean switch argument
parser.add_argument('-m', "--mirror", help="mirror input image", type=bool, action=ap.BooleanOptionalAction)
# another boolean switch argument, this time with value, name of the new file and dimensions
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
help="make planar model from processed image", required=False)
# file with configuration containing presets, new preset name
# pair argument - give both or none
parser.add_argument('-c', '--config', nargs=2,
help='pair: name of the config file with presets, name of the preset')
# array of unknown length, all filter names saved inside
parser.add_argument('filters', type=str, nargs='*',
help="list of filter names and their parameters in form [filter_name1 param1=value1 param2=value2 filter_name2 param1=value1...]")
self.args = parser.parse_args()
def filter_factory(self, filter_name):
''' Selects filter method of filters library.
'''
print("Applying " + filter_name + " filter ", end='')
return getattr(flt, filter_name)
def mirror_image(self):
''' Mirror image when mirroring is needed,
should be used only if we want a positive model
'''
print("Mirroring image", file=sys.stderr)
self.img = cv.flip(self.img, 1) # 1 for vertical mirror
def apply_filter(self):
''' Apply filters to image.
Apply the filters one by one, if none were given, just save original image output.
'''
if len(self.filters) == 0:
# No filter given, just save the image
pass
else:
# Apply all filters
for i, filter_name in enumerate(self.filters):
filter = self.filter_factory(filter_name)
filter.apply(self, self.params[i+1])
def save_image(self, fig, ax):
''' Save processed image.
Colormap set to grayscale to avoid color mismatch.
'''
print("Saving image to ", self.output_file, file=sys.stderr)
ax.imshow(self.img, cmap="gray")
fig.savefig(fname=self.output_file, dpi='figure')
def print_size(self, size):
print("Image of height: " + str(size[0]) +
" px and width: " + str(size[1]) + " px", file=sys.stderr)
def make_model(self):
'''After processing image, make a lithophane from it.
'''
print("Making heighthmap", file=sys.stderr)
self.prepare_heightmap()
if self.mode == "2d":
print("Converting to stl format", file=sys.stderr)
self.make_stl_planar()
plt.show()
print(f"Saving lithophane to ", self.stl_file, file=sys.stderr)
self.save_stl_2d()
elif self.mode == "3d":
self.map_image_to_3d()
plt.show()
self.save_stl_3d()
else:
print("Mode not supported", file=sys.stderr)
exit(1)
def prepare_heightmap(self):
''' Create numpy meshgrid.
Modify image values to get usable depth values.
'''
if self.img.dtype == np.float32 or self.img.dtype == np.float64:
print("Converting to uint8", file=sys.stderr)
self.img = self.img * 255
self.img = self.img.astype(np.uint8)
if self.mode == "2d":
if self.height_base <= 0:
print("Depth of plate height must be positive", file=sys.stderr)
exit(1)
if self.height_line + self.height_base <= 0:
print("Line depth must be less than plate thickness", file=sys.stderr)
exit(1)
print("Base height:", self.height_base,
"mm, lines depth/height:", self.height_line, "mm")
# Transform image values to get a heightmap
if self.height_line < 0:
self.img = (self.height_base + (1 - self.img/255)
* self.height_line)
else:
self.img = (self.height_base + (1 - self.img/255)
* self.height_line)
if self.mode == "3d":
#TODO add some checks and print info
pass
def add_faces(self, faces, c):
# Function to add faces to the list
faces.append([c, c + 1, c + 2])
faces.append([c + 1, c + 3, c + 2])
return c + 4
def make_stl_planar(self):
''' Create mesh from meshgrid.
Create vertices from meshgrid, add depth values from image.
Create faces from vertices. Add vectors and faces to the model.
From wikipedia.org/wiki/STL_(file_format):
ascii stl format consists of repeating structures:
facet normal ni nj nk # normal vector
outer loop
vertex v1x v1y v1z # vertex 1
vertex v2x v2y v2z # vertex 2
vertex v3x v3y v3z # vertex 3
endloop
endfacet
'''
# This sets the size of stl model and number of subdivisions / triangles
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
self.meshgrid_2d = np.meshgrid(x, y)
# Add the image matrix to the 2D meshgrid and create 1D array of 3D points
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_2d))).T
z = (self.img / 10).reshape(-1, 1)
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
# Convert 1D array back to matrix of 3D points
vertex_arr = vertex_arr.reshape(self.height, self.width, 3)
count = 0
vertices = []
faces = []
# Iterate over all vertices, create faces
for i in range(self.height - 1):
for j in range(self.width - 1):
vertices.append([vertex_arr[i][j]])
vertices.append([vertex_arr[i][j+1]])
vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]])
count = self.add_faces(faces, count)
# Add faces for the backside of the lithophane
null_arr = np.copy(vertex_arr)
for i in range(self.height):
for j in range(self.width):
null_arr[i][j][2] = 0
# Back side faces
for i in range(self.height - 1):
for j in range(self.width - 1):
vertices.append([null_arr[i][j]])
vertices.append([null_arr[i+1][j]])
vertices.append([null_arr[i][j+1]])
vertices.append([null_arr[i+1][j+1]])
count = self.add_faces(faces, count)
# Horizontal side faces
for j in range(self.height - 1):
vertices.append([vertex_arr[j][0]])
vertices.append([vertex_arr[j+1][0]])
vertices.append([null_arr[j][0]])
vertices.append([null_arr[j+1][0]])
count = self.add_faces(faces, count)
max = self.width - 1
vertices.append([vertex_arr[j+1][max]])
vertices.append([vertex_arr[j][max]])
vertices.append([null_arr[j+1][max]])
vertices.append([null_arr[j][max]])
count = self.add_faces(faces, count)
# Vertical side faces
for j in range(self.width - 1):
vertices.append([vertex_arr[0][j+1]])
vertices.append([vertex_arr[0][j]])
vertices.append([null_arr[0][j+1]])
vertices.append([null_arr[0][j]])
count = self.add_faces(faces, count)
max = self.height - 1
vertices.append([vertex_arr[max][j]])
vertices.append([vertex_arr[max][j+1]])
vertices.append([null_arr[max][j]])
vertices.append([null_arr[max][j+1]])
count = self.add_faces(faces, count)
# Convert to numpy arrays
faces = np.array(faces)
vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3)
self.stl_mesh_2d = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces):
for j in range(3):
self.stl_mesh_2d.vectors[i][j] = vertices[face[j], :]
def save_stl_2d(self):
''' Save final mesh to stl file.
'''
self.stl_mesh_2d.save(self.stl_file)
def map_image_to_3d(self):
''' Map fingerprint to finger model.
'''
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7)
z2 = np.logspace(10, 0, int(np.floor(self.width / 2)), base=0.7)
ztemp = 5*np.concatenate((z1, z2))
z = np.array([])
for i in range(self.height):
z = np.concatenate((z, ztemp * pow(np.log(i+2), -1)))
z = z.reshape(-1, 1)
self.meshgrid_3d = np.meshgrid(x, y)
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_3d))).T
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
vertex_arr = vertex_arr.reshape(self.height, self.width, 3)
count = 0
vertices = []
faces = []
# Iterate over all vertices, create faces
for i in range(self.height - 1):
for j in range(self.width - 1):
vertices.append([vertex_arr[i][j]])
vertices.append([vertex_arr[i][j+1]])
vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]])
count = self.add_faces(faces, count)
#self.finger_base = mesh.Mesh(np.zeros(, dtype=mesh.Mesh.dtype))
# linear projection
# extrude lines in 1 direction
# cylinder / circular projection
# extrude lines in direction of a suitable cylinder
# normal projection
# extrude lines in the direction of normals of given finger model
# Convert to numpy arrays
faces = np.array(faces)
vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3)
self.mesh_finger = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces):
for j in range(3):
self.mesh_finger.vectors[i][j] = vertices[face[j], :]
def save_stl_3d(self):
''' Save final mesh to stl file.
'''
self.mesh_finger.save(self.stl_file)
image = app()