|
|
|
"""! @file main.py
|
|
|
|
@brief Main file for the application
|
|
|
|
@author xlanro00
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Import basic libraries
|
|
|
|
import argparse as ap
|
|
|
|
import sys
|
|
|
|
import json
|
|
|
|
from os.path import exists
|
|
|
|
|
|
|
|
# Libraries for image processing
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import cv2 as cv
|
|
|
|
from stl import mesh
|
|
|
|
|
|
|
|
# Import custom image filter library
|
|
|
|
import filters as flt
|
|
|
|
|
|
|
|
|
|
|
|
class app:
|
|
|
|
def __init__(self):
|
|
|
|
# Parse arguments from command line
|
|
|
|
self.parse_arguments()
|
|
|
|
|
|
|
|
# List and dict for filters and corresponding parameters
|
|
|
|
self.filters = []
|
|
|
|
self.params = {}
|
|
|
|
|
|
|
|
# Parse configuration from json config file
|
|
|
|
if self.args.config:
|
|
|
|
self.config_file, self.preset_name = self.args.config
|
|
|
|
self.config = json.load(open(self.config_file))
|
|
|
|
self.parse_conf()
|
|
|
|
|
|
|
|
elif self.args.filters:
|
|
|
|
print("No config file given, using command line arguments")
|
|
|
|
i = 0
|
|
|
|
|
|
|
|
# Otherwise expect filters from command line
|
|
|
|
for filter in self.args.filters:
|
|
|
|
if filter.find('=') == -1:
|
|
|
|
# if no '=' char in filter, it is a new filter name
|
|
|
|
self.filters.append(filter)
|
|
|
|
i += 1
|
|
|
|
self.params[i] = {} # create empty dict for params
|
|
|
|
else:
|
|
|
|
# else it's a parameter for current filter
|
|
|
|
key, value = filter.split('=')
|
|
|
|
self.params[i][key] = value
|
|
|
|
self.parse_params(self.params[i])
|
|
|
|
|
|
|
|
else:
|
|
|
|
print("No filters given, saving original image")
|
|
|
|
|
|
|
|
self.input_file = self.args.input_file
|
|
|
|
self.output_file = self.args.output_file
|
|
|
|
self.dpi = self.args.dpi
|
|
|
|
self.mirror = True if self.args.mirror else False
|
|
|
|
|
|
|
|
if exists(self.input_file):
|
|
|
|
self.run_filtering()
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
self.error_exit("Input file " + self.input_file +
|
|
|
|
" does not exist")
|
|
|
|
|
|
|
|
if self.args.stl_file:
|
|
|
|
|
|
|
|
# Get stl filename
|
|
|
|
self.stl_path = self.output_file.rsplit('/', 1)[0] + '/'
|
|
|
|
|
|
|
|
# Get mode and model parameters
|
|
|
|
if self.args.planar:
|
|
|
|
self.mode = "planar"
|
|
|
|
|
|
|
|
# TODO: add default values for planar mode, not like this
|
|
|
|
if len(self.args.stl_file) < 2:
|
|
|
|
self.height_line = 2
|
|
|
|
self.height_base = 10
|
|
|
|
print(
|
|
|
|
"Warning: Too few arguments, using default values (10mm base, 2mm lines)")
|
|
|
|
else:
|
|
|
|
self.height_line = float(self.args.stl_file[0])
|
|
|
|
self.height_base = float(self.args.stl_file[1])
|
|
|
|
print("Base height:", self.height_base,
|
|
|
|
"mm, lines depth/height:", self.height_line, "mm")
|
|
|
|
|
|
|
|
else:
|
|
|
|
self.mode = "curved"
|
|
|
|
|
|
|
|
# TODO: add default values for curved mode, not like this
|
|
|
|
if len(self.args.stl_file) < 4:
|
|
|
|
self.height_line = 2
|
|
|
|
self.height_base = 10
|
|
|
|
self.curv_rate_x = 0.5
|
|
|
|
self.curv_rate_y = 0.5
|
|
|
|
print(
|
|
|
|
"Warning: Too few arguments, using default values (2mm lines, curvature 0.5 on x, 0.5 on y)")
|
|
|
|
else:
|
|
|
|
self.height_line = float(self.args.stl_file[0])
|
|
|
|
self.height_base = float(self.args.stl_file[1])
|
|
|
|
self.curv_rate_x = float(
|
|
|
|
self.args.stl_file[2]) # finger depth
|
|
|
|
self.curv_rate_y = float(
|
|
|
|
self.args.stl_file[3]) # finger depth
|
|
|
|
print("Line height:", self.height_line, "mm, base height: ", self.height_base,
|
|
|
|
"mm, x axis curvature: ", self.curv_rate_x, ", y axis curvature:", self.curv_rate_y)
|
|
|
|
|
|
|
|
print("Stl generation in ", self.mode)
|
|
|
|
self.run_stl()
|
|
|
|
|
|
|
|
def parse_arguments(self):
|
|
|
|
'''Parse arguments from command line using argparse library.
|
|
|
|
'''
|
|
|
|
|
|
|
|
parser = ap.ArgumentParser(prog='main.py',
|
|
|
|
description='Program for transforming a 2D image into 3D fingerprint.',
|
|
|
|
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] [-p] input_file output_file dpi ([-c | --config config_file preset] | [filters ...]) [-s | --stl_file height_line height_base | --stl_file height_line curv_rate_x curv_rate_y]')
|
|
|
|
|
|
|
|
# positional arguments
|
|
|
|
parser.add_argument("input_file", type=str, help="input file path")
|
|
|
|
parser.add_argument("output_file", type=str, help="output file path")
|
|
|
|
parser.add_argument("dpi", type=int, help="dpi of used scanner")
|
|
|
|
|
|
|
|
# boolean switch argument
|
|
|
|
parser.add_argument('-m', '--mirror', type=bool, action=ap.BooleanOptionalAction,
|
|
|
|
help="switch to mirror input image")
|
|
|
|
|
|
|
|
# another boolean switch argument, this time with value, name of the new file and dimensions
|
|
|
|
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
|
|
|
|
help="create stl model from processed image")
|
|
|
|
|
|
|
|
# another boolean switch argument, this enables planar mode
|
|
|
|
parser.add_argument('-p', '--planar', type=bool, action=ap.BooleanOptionalAction,
|
|
|
|
help="make stl shape planar instead of curved one")
|
|
|
|
|
|
|
|
# configuration file containing presets, preset name
|
|
|
|
# pair argument - give both or none
|
|
|
|
parser.add_argument('-c', '--config', nargs=2,
|
|
|
|
help='pair: name of the config file with presets, name of the preset')
|
|
|
|
|
|
|
|
# array of unknown length, all filter names saved inside
|
|
|
|
parser.add_argument('filters', type=str, nargs='*',
|
|
|
|
help="list of filter names and their parameters in form [filter_name1 param1=value param2=value filter_name2 param1=value...]")
|
|
|
|
|
|
|
|
self.args = parser.parse_args()
|
|
|
|
|
|
|
|
def parse_params(self, params):
|
|
|
|
'''Parse parameters of filters. Set to None if not given.
|
|
|
|
They are later set to default values in the filter method apply.
|
|
|
|
'''
|
|
|
|
|
|
|
|
# TODO: possibly too bloated, sending all possible params to each filter
|
|
|
|
possible_params = {"h", "searchWindowSize", "templateWindowSize",
|
|
|
|
"ksize", "kernel", "sigmaX", "sigmaY",
|
|
|
|
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
|
|
|
|
"op", "strength", "amount", "radius", "weight", "channelAxis",
|
|
|
|
"theta", "sigma", "lambda", "gamma", "psi", "shape", "percent",
|
|
|
|
"threshold", "maxval", "type", "margin", "color"}
|
|
|
|
|
|
|
|
for key in possible_params:
|
|
|
|
if params.get(key) is None:
|
|
|
|
params[key] = None
|
|
|
|
else:
|
|
|
|
params[key] = params[key]
|
|
|
|
|
|
|
|
def parse_conf(self):
|
|
|
|
'''Parse configuration file if one was given.
|
|
|
|
Store filters and their parameters.
|
|
|
|
'''
|
|
|
|
|
|
|
|
# Find preset in config file
|
|
|
|
if self.preset_name in self.config:
|
|
|
|
filter_array = self.config[self.preset_name]
|
|
|
|
# Iterate over filters in preset, store them and their parameters
|
|
|
|
for i, filter in enumerate(range(len(filter_array)), start=1):
|
|
|
|
self.filters.append(filter_array[filter]["name"])
|
|
|
|
self.params[i] = {}
|
|
|
|
for attribute, value in filter_array[filter].items():
|
|
|
|
# Filter name isn't needed in here
|
|
|
|
if attribute != "name":
|
|
|
|
self.params[i][attribute] = value
|
|
|
|
self.parse_params(self.params[i])
|
|
|
|
print("Loaded preset: " + self.preset_name +
|
|
|
|
" from file: " + self.config_file)
|
|
|
|
else:
|
|
|
|
self.error_exit("Preset not found")
|
|
|
|
|
|
|
|
def error_exit(self, message):
|
|
|
|
'''Print error message and exit the application.
|
|
|
|
'''
|
|
|
|
|
|
|
|
print("ERROR:", message, file=sys.stderr)
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
#------------------------- FILTERING -------------------------#
|
|
|
|
|
|
|
|
def run_filtering(self):
|
|
|
|
'''Load from input file, store as numpy.array,
|
|
|
|
process image using filters and save to output file.
|
|
|
|
'''
|
|
|
|
|
|
|
|
self.img = cv.imread(
|
|
|
|
self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8)
|
|
|
|
|
|
|
|
# gets empty figure and ax with dimensions of input image
|
|
|
|
self.height, self.width = self.img.shape
|
|
|
|
self.fig, ax = self.get_empty_figure()
|
|
|
|
|
|
|
|
if self.mirror is True:
|
|
|
|
self.mirror_image()
|
|
|
|
|
|
|
|
# Apply all filters and save image
|
|
|
|
self.apply_filters()
|
|
|
|
self.save_image(self.fig, ax)
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
def get_empty_figure(self):
|
|
|
|
'''Return empty figure with one ax of dimensions of input image.
|
|
|
|
'''
|
|
|
|
size = (self.width/self.dpi, self.height/self.dpi)
|
|
|
|
fig = plt.figure(figsize=size, frameon=False, dpi=self.dpi)
|
|
|
|
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
|
|
|
ax.set_axis_off()
|
|
|
|
fig.add_axes(ax)
|
|
|
|
return fig, ax
|
|
|
|
|
|
|
|
def mirror_image(self):
|
|
|
|
'''Mirror image using opencv, should be used if we want a positive model.
|
|
|
|
'''
|
|
|
|
|
|
|
|
print("Mirroring image", file=sys.stderr)
|
|
|
|
self.img = cv.flip(self.img, 1) # 1 for vertical mirror
|
|
|
|
|
|
|
|
def apply_filters(self):
|
|
|
|
'''Apply filters to image one by one.
|
|
|
|
In case none were given, pass and save original image to the output file.
|
|
|
|
'''
|
|
|
|
|
|
|
|
if len(self.filters) != 0:
|
|
|
|
# Apply all filters
|
|
|
|
for i, filter_name in enumerate(self.filters):
|
|
|
|
# Get filter class from filter.py, use the apply method
|
|
|
|
filter = getattr(flt, filter_name)
|
|
|
|
filter.apply(self, self.params[i+1])
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
|
|
|
|
def save_image(self, fig, ax):
|
|
|
|
'''Save processed image to the output file.
|
|
|
|
'''
|
|
|
|
|
|
|
|
print("Saving image to", self.output_file, file=sys.stderr)
|
|
|
|
|
|
|
|
# Colormap must be set to grayscale to avoid color mismatch.
|
|
|
|
ax.imshow(self.img, cmap="gray")
|
|
|
|
fig.savefig(fname=self.output_file)
|
|
|
|
|
|
|
|
#------------------------- STL GENERATION -------------------------#
|
|
|
|
|
|
|
|
def run_stl(self):
|
|
|
|
'''Make heightmap, create mesh and save as stl file.
|
|
|
|
'''
|
|
|
|
|
|
|
|
self.prepare_heightmap()
|
|
|
|
self.get_ID()
|
|
|
|
|
|
|
|
print("Creating mesh", file=sys.stderr)
|
|
|
|
|
|
|
|
# Create a mesh using one of two modes
|
|
|
|
if self.mode == "planar":
|
|
|
|
self.make_stl_planar()
|
|
|
|
|
|
|
|
elif self.mode == "curved":
|
|
|
|
self.make_stl_curved()
|
|
|
|
|
|
|
|
elif self.mode == "mapped":
|
|
|
|
# TODO: find a suitable finger model, try to map the fingerprint onto it
|
|
|
|
pass
|
|
|
|
|
|
|
|
else:
|
|
|
|
self.error_exit("Mode not supported")
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
self.save_stl()
|
|
|
|
print(f"Saving model to ", self.stl_path, file=sys.stderr)
|
|
|
|
|
|
|
|
def prepare_heightmap(self):
|
|
|
|
'''Modify image values to get usable height/depth values.
|
|
|
|
Check validity of dimension parameters.
|
|
|
|
Prepare meshgrid.
|
|
|
|
'''
|
|
|
|
|
|
|
|
if self.img.dtype != np.uint8:
|
|
|
|
print("Converting to uint8", file=sys.stderr)
|
|
|
|
self.img = self.img / np.max(self.img) * 255
|
|
|
|
self.img = self.img.astype(np.uint8)
|
|
|
|
|
|
|
|
if self.mode == "planar":
|
|
|
|
# just renamed it for easier use
|
|
|
|
height_base = self.height_base
|
|
|
|
|
|
|
|
if self.height_base <= 0:
|
|
|
|
self.error_exit("Depth of plate height must be positive")
|
|
|
|
|
|
|
|
if self.height_line + self.height_base <= 0:
|
|
|
|
self.error_exit("Line depth must be less than plate thickness")
|
|
|
|
|
|
|
|
if self.mode == "curved":
|
|
|
|
# still need this value later
|
|
|
|
height_base = 0
|
|
|
|
|
|
|
|
# Don't need to check curvature, check only heights
|
|
|
|
if self.height_base <= 0 or self.height_line <= 0:
|
|
|
|
self.error_exit("Base and line height must both be positive")
|
|
|
|
|
|
|
|
# Transform image values to get a heightmap
|
|
|
|
self.img = (height_base + (1 - self.img/255)
|
|
|
|
* self.height_line)
|
|
|
|
|
|
|
|
# This sets the size of stl model and number of subdivisions / triangles
|
|
|
|
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
|
|
|
|
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
|
|
|
|
|
|
|
|
self.meshgrid = np.meshgrid(x, y)
|
|
|
|
|
|
|
|
def get_ID(self):
|
|
|
|
'''Get unique ID for the model.
|
|
|
|
Consists of pair input_file + preset_name.
|
|
|
|
'''
|
|
|
|
|
|
|
|
# TODO: somehow compress this to fit it onto the model
|
|
|
|
self.id = self.input_file.split("/")[-1].split(".")[0] + "_" + self.preset_name
|
|
|
|
# TODO: hash is not unique, find a better way
|
|
|
|
# TODO: stl file format has 80 chars for header, use that space to store info
|
|
|
|
# python generates a random value for security reasons, it has to be turned off
|
|
|
|
self.id = str(hash(self.id))
|
|
|
|
#print(self.id)
|
|
|
|
|
|
|
|
def append_faces(self, faces, c):
|
|
|
|
# Function to add faces to the list
|
|
|
|
faces.append([c, c + 1, c + 2])
|
|
|
|
faces.append([c + 1, c + 3, c + 2])
|
|
|
|
return c + 4
|
|
|
|
|
|
|
|
def engrave_text(self, bottom_vert_arr):
|
|
|
|
'''Engrave text on the back of the model.
|
|
|
|
Create an empty image, fill it with color and draw text on it.
|
|
|
|
'''
|
|
|
|
|
|
|
|
fig, ax = self.get_empty_figure()
|
|
|
|
|
|
|
|
# paint the background black
|
|
|
|
ax.plot([0, 1], [0, 1], c="black", lw=self.width)
|
|
|
|
|
|
|
|
# extract filename
|
|
|
|
text = self.stl_path.split("/")[-1].split(".")[0] + self.id
|
|
|
|
fontsize = 20
|
|
|
|
|
|
|
|
# create text object, paint it white
|
|
|
|
t = ax.text(0.5, 0.5, text, ha="center", va="center",
|
|
|
|
fontsize=30, c="white", rotation=90, wrap=True, clip_on=True)
|
|
|
|
|
|
|
|
# adjust fontsize to fit text in the image
|
|
|
|
# matplotlib does not support multiline text, wrapping is broken
|
|
|
|
rend = fig.canvas.get_renderer()
|
|
|
|
while (t.get_window_extent(rend).width > self.width or t.get_window_extent(rend).height > self.height):
|
|
|
|
fontsize -= 0.3
|
|
|
|
t.set_fontsize(fontsize)
|
|
|
|
|
|
|
|
# update figure, read pixels and reshape to 3d array
|
|
|
|
fig.canvas.draw()
|
|
|
|
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
|
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
|
|
|
|
|
|
# scale inscription layer to suitable height
|
|
|
|
data = (data/255)/10
|
|
|
|
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
# TODO: maybe don't use nested for loops, use numpy?
|
|
|
|
if self.mode == "planar":
|
|
|
|
for i in range(self.height):
|
|
|
|
for j in range(self.width):
|
|
|
|
bottom_vert_arr[i][j][2] = data[i][j][0]
|
|
|
|
elif self.mode == "curved":
|
|
|
|
for i in range(self.height):
|
|
|
|
for j in range(self.width):
|
|
|
|
bottom_vert_arr[i][j][2] += data[i][j][0] - self.height_base/10
|
|
|
|
|
|
|
|
return bottom_vert_arr
|
|
|
|
|
|
|
|
def create_stl_mesh(self, faces, vertices):
|
|
|
|
'''Create mesh from faces and vertices.
|
|
|
|
'''
|
|
|
|
|
|
|
|
# Convert lists to numpy arrays
|
|
|
|
faces = np.array(faces)
|
|
|
|
vertices = np.array(vertices)
|
|
|
|
|
|
|
|
# Create the mesh - vertices.shape (no_faces, 3, 3)
|
|
|
|
self.stl_model = mesh.Mesh(
|
|
|
|
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
|
|
|
|
for i, face in enumerate(faces):
|
|
|
|
for j in range(3):
|
|
|
|
self.stl_model.vectors[i][j] = vertices[face[j], :]
|
|
|
|
|
|
|
|
def make_stl_planar(self):
|
|
|
|
'''Create mesh from meshgrid.
|
|
|
|
Create vertices from meshgrid, add depth values from image.
|
|
|
|
Create faces from vertices. Add vectors and faces to the model.
|
|
|
|
|
|
|
|
From wikipedia.org/wiki/STL_(file_format):
|
|
|
|
ascii stl format consists of repeating structures:
|
|
|
|
|
|
|
|
facet normal ni nj nk # normal vector
|
|
|
|
outer loop
|
|
|
|
vertex v1x v1y v1z # vertex 1
|
|
|
|
vertex v2x v2y v2z # vertex 2
|
|
|
|
vertex v3x v3y v3z # vertex 3
|
|
|
|
endloop
|
|
|
|
endfacet
|
|
|
|
'''
|
|
|
|
|
|
|
|
# Add the image matrix to the 2D meshgrid and create 1D array of 3D points
|
|
|
|
top_vert_arr = np.vstack(list(map(np.ravel, self.meshgrid))).T
|
|
|
|
z = (self.img / 10).reshape(-1, 1)
|
|
|
|
top_vert_arr = np.concatenate((top_vert_arr, z), axis=1)
|
|
|
|
|
|
|
|
# Convert 1D array back to matrix of 3D points
|
|
|
|
top_vert_arr = top_vert_arr.reshape(self.height, self.width, 3)
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
vertices = []
|
|
|
|
faces = []
|
|
|
|
|
|
|
|
# TODO: don't like this, could be done using numpy vectorisation?
|
|
|
|
# Iterate over all vertices, create faces
|
|
|
|
for i in range(self.height - 1):
|
|
|
|
for j in range(self.width - 1):
|
|
|
|
|
|
|
|
vertices.append([top_vert_arr[i][j]])
|
|
|
|
vertices.append([top_vert_arr[i][j+1]])
|
|
|
|
vertices.append([top_vert_arr[i+1][j]])
|
|
|
|
vertices.append([top_vert_arr[i+1][j+1]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
# Prepare image with plotted text for the backside of the lithophane
|
|
|
|
bottom_vert_arr = np.copy(top_vert_arr)
|
|
|
|
self.engrave_text(bottom_vert_arr)
|
|
|
|
|
|
|
|
# Back side faces
|
|
|
|
for i in range(self.height - 1):
|
|
|
|
for j in range(self.width - 1):
|
|
|
|
|
|
|
|
vertices.append([bottom_vert_arr[i][j]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][j]])
|
|
|
|
vertices.append([bottom_vert_arr[i][j+1]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][j+1]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
# Horizontal side faces
|
|
|
|
for i in range(self.height - 1):
|
|
|
|
vertices.append([top_vert_arr[i][0]])
|
|
|
|
vertices.append([top_vert_arr[i+1][0]])
|
|
|
|
vertices.append([bottom_vert_arr[i][0]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][0]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
max = self.width - 1
|
|
|
|
|
|
|
|
vertices.append([top_vert_arr[i+1][max]])
|
|
|
|
vertices.append([top_vert_arr[i][max]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][max]])
|
|
|
|
vertices.append([bottom_vert_arr[i][max]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
# Vertical side faces
|
|
|
|
for j in range(self.width - 1):
|
|
|
|
vertices.append([top_vert_arr[0][j+1]])
|
|
|
|
vertices.append([top_vert_arr[0][j]])
|
|
|
|
vertices.append([bottom_vert_arr[0][j+1]])
|
|
|
|
vertices.append([bottom_vert_arr[0][j]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
max = self.height - 1
|
|
|
|
|
|
|
|
vertices.append([top_vert_arr[max][j]])
|
|
|
|
vertices.append([top_vert_arr[max][j+1]])
|
|
|
|
vertices.append([bottom_vert_arr[max][j]])
|
|
|
|
vertices.append([bottom_vert_arr[max][j+1]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
self.create_stl_mesh(faces, vertices)
|
|
|
|
|
|
|
|
def make_stl_curved(self):
|
|
|
|
'''Map fingerprint to finger model.
|
|
|
|
'''
|
|
|
|
|
|
|
|
# TODO: this might be done in a better way
|
|
|
|
# instead of summing up the values, use their product - 0 ?
|
|
|
|
z = np.array([])
|
|
|
|
for x in range(self.width):
|
|
|
|
z = np.append(z, np.sqrt(1 - (2*x/self.width - 1)**2)
|
|
|
|
* (self.curv_rate_x**2))
|
|
|
|
z = np.tile(z, (self.height, 1))
|
|
|
|
for y in range(self.height):
|
|
|
|
new = np.sqrt((1 - ((self.height - y)/self.height)**2)
|
|
|
|
* (self.curv_rate_y**2))
|
|
|
|
z[y] = z[y] + new
|
|
|
|
|
|
|
|
z = z.reshape(-1, 1)
|
|
|
|
z_cpy = np.copy(z)
|
|
|
|
self.img = (self.img / 10).reshape(-1, 1)
|
|
|
|
z += self.img
|
|
|
|
|
|
|
|
vert_arr_tmp = np.vstack(list(map(np.ravel, self.meshgrid))).T
|
|
|
|
|
|
|
|
# for top side
|
|
|
|
top_vert_arr = np.concatenate((vert_arr_tmp, z), axis=1)
|
|
|
|
top_vert_arr = top_vert_arr.reshape(self.height, self.width, 3)
|
|
|
|
|
|
|
|
# for bottom side
|
|
|
|
bottom_vert_arr = np.concatenate((vert_arr_tmp, z_cpy), axis=1)
|
|
|
|
bottom_vert_arr = bottom_vert_arr.reshape(self.height, self.width, 3)
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
vertices = []
|
|
|
|
faces = []
|
|
|
|
|
|
|
|
self.engrave_text(bottom_vert_arr)
|
|
|
|
|
|
|
|
# TODO: code bellow is duplicate of the code in planar generation
|
|
|
|
# if not changed move to a separate function and simplify
|
|
|
|
|
|
|
|
# Iterate over all vertices, create faces
|
|
|
|
for i in range(self.height - 1):
|
|
|
|
for j in range(self.width - 1):
|
|
|
|
if (top_vert_arr[i][j][2] <= bottom_vert_arr[i][j][2]
|
|
|
|
or top_vert_arr[i+1][j][2] <= bottom_vert_arr[i+1][j][2]
|
|
|
|
or top_vert_arr[i][j+1][2] <= bottom_vert_arr[i][j+1][2]
|
|
|
|
or top_vert_arr[i+1][j+1][2] <= bottom_vert_arr[i+1][j+1][2]):
|
|
|
|
continue
|
|
|
|
vertices.append([top_vert_arr[i][j]])
|
|
|
|
vertices.append([top_vert_arr[i][j+1]])
|
|
|
|
vertices.append([top_vert_arr[i+1][j]])
|
|
|
|
vertices.append([top_vert_arr[i+1][j+1]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
# Rotated back side faces
|
|
|
|
for i in range(self.height - 1):
|
|
|
|
for j in range(self.width - 1):
|
|
|
|
if (top_vert_arr[i][j][2] <= bottom_vert_arr[i][j][2]):
|
|
|
|
continue
|
|
|
|
|
|
|
|
vertices.append([bottom_vert_arr[i][j]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][j]])
|
|
|
|
vertices.append([bottom_vert_arr[i][j+1]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][j+1]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
# Horizontal side faces
|
|
|
|
for i in range(self.height - 1): # right
|
|
|
|
|
|
|
|
vertices.append([top_vert_arr[i][0]])
|
|
|
|
vertices.append([top_vert_arr[i+1][0]])
|
|
|
|
vertices.append([bottom_vert_arr[i][0]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][0]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
max = self.width - 1
|
|
|
|
|
|
|
|
vertices.append([top_vert_arr[i+1][max]])
|
|
|
|
vertices.append([top_vert_arr[i][max]])
|
|
|
|
vertices.append([bottom_vert_arr[i+1][max]])
|
|
|
|
vertices.append([bottom_vert_arr[i][max]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
# Vertical side faces
|
|
|
|
for j in range(self.width - 1):
|
|
|
|
|
|
|
|
vertices.append([top_vert_arr[0][j+1]])
|
|
|
|
vertices.append([top_vert_arr[0][j]])
|
|
|
|
vertices.append([bottom_vert_arr[0][j+1]])
|
|
|
|
vertices.append([bottom_vert_arr[0][j]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
max = self.height - 1
|
|
|
|
|
|
|
|
vertices.append([top_vert_arr[max][j]])
|
|
|
|
vertices.append([top_vert_arr[max][j+1]])
|
|
|
|
vertices.append([bottom_vert_arr[max][j]])
|
|
|
|
vertices.append([bottom_vert_arr[max][j+1]])
|
|
|
|
|
|
|
|
count = self.append_faces(faces, count)
|
|
|
|
|
|
|
|
self.create_stl_mesh(faces, vertices)
|
|
|
|
|
|
|
|
def save_stl(self):
|
|
|
|
'''Save final mesh to stl file.
|
|
|
|
'''
|
|
|
|
|
|
|
|
# TODO: add a hash function to create ID specific to
|
|
|
|
# input image + preset from config. file or from console + input params
|
|
|
|
# TODO: add the full parameters and filters to a file inside output dir.
|
|
|
|
# TODO: somehow add the full params to the stl file header if possible.
|
|
|
|
# TODO: add the ID to backplate
|
|
|
|
# TODO: add the ID to stl file name
|
|
|
|
|
|
|
|
# for now only path + id(input filename + preset name) + .stl is used
|
|
|
|
# TODO: add output filename to the filename, hash the ID
|
|
|
|
# stl_filename = self.stl_path.rsplit("/")[0] + self.output_file.split("/"))[-1] + "_" + self.id + ".stl"
|
|
|
|
stl_filename = self.output_file.split(".")[0] + "_" + self.id + ".stl"
|
|
|
|
self.stl_model.save(stl_filename)
|
|
|
|
|
|
|
|
|
|
|
|
# run the application
|
|
|
|
image = app()
|