You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

588 lines
21 KiB

"""! @file main.py
@brief Main file for the application
@author xlanro00
"""
# Import basic libraries
import argparse as ap
import sys
import json
from os.path import exists
# Libraries for image processing
import numpy as np
import matplotlib.pyplot as plt
#from PIL import Image
import cv2 as cv
from stl import mesh
import math
# Import custom image filter library
import filters as flt
class app:
def __init__(self):
# Parse arguments from command line
self.parse_arguments()
# List and dict for filters and corresponding parameters
self.filters = []
self.params = {}
# Parse configuration from json config file
if self.args.config:
self.config_file, self.preset_name = self.args.config
self.config = json.load(open(self.config_file))
self.parse_conf()
elif self.args.filters:
print("No config file given, using command line arguments")
i = 0
# Otherwise expect filters from command line
for filter in self.args.filters:
if filter.find('=') == -1:
# if no '=' char in filter, it is a new filter name
self.filters.append(filter)
i += 1
self.params[i] = {} # create empty dict for params
else:
# else it's a parameter for current filter
key, value = filter.split('=')
self.params[i][key] = value
self.parse_params(self.params[i])
else:
print("No filters given, saving original image")
self.input_file = self.args.input_file
self.output_file = self.args.output_file
self.dpi = self.args.dpi
self.mirror = True if self.args.mirror else False
if exists(self.input_file):
self.run_filtering()
else:
self.error_exit("Input file " + self.input_file +
" does not exist")
if self.args.stl_file:
# Get stl filename
self.stl_file = self.args.stl_file[0]
# Get mode and model parameters
if self.args.planar:
self.mode = "2d"
if len(self.args.stl_file) < 3:
self.height_base = 10
self.height_line = 2
print(
"Warning: Too few arguments, using default values (10mm base, 2mm lines)")
else:
self.height_line = float(self.args.stl_file[1])
self.height_base = float(self.args.stl_file[2])
print("Base height:", self.height_base,
"mm, lines depth/height:", self.height_line, "mm")
else:
self.mode = "3d"
if len(self.args.stl_file) < 4:
self.height_line = 2
self.curv_rate_x = 0.5
self.curv_rate_y = 0.5
print(
"Warning: Too few arguments, using default values (2mm lines, curvature 0.5 on x, 0.5 on y)")
else:
self.height_line = float(self.args.stl_file[1])
self.curv_rate_x = float(
self.args.stl_file[2]) # finger depth
self.curv_rate_y = float(
self.args.stl_file[3]) # finger depth
# self.curv_rate_x = float(self.args.stl_file[2]) # excentricity x
# self.curv_rate_y = float(self.args.stl_file[3]) # excentricity y
print("Line height:", self.height_line,"mm, x axis curvature:", self.curv_rate_x,
", y axis curvature:", self.curv_rate_y)
print(self.mode, "mode selected")
self.run_stl()
def parse_arguments(self):
'''Parse arguments from command line using argparse library.
'''
parser = ap.ArgumentParser(prog='main.py',
description='Program for processing a 2D image into 3D fingerprint.',
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] [-p] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...]) [-s stl_file | --stl stl_file height_line height_base | --stl_file stl_file height_line curv_rate_x curv_rate_y]')
# positional arguments
parser.add_argument("input_file", type=str, help="input file path")
parser.add_argument("output_file", type=str, help="output file path")
parser.add_argument("dpi", type=int, help="dpi of used scanner")
# boolean switch argument
parser.add_argument('-m', '--mirror', type=bool, action=ap.BooleanOptionalAction,
help="switch to mirror input image")
# another boolean switch argument, this time with value, name of the new file and dimensions
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
help="create stl model from processed image")
# another boolean switch argument, this enables 2d mode
parser.add_argument('-p', '--planar', type=bool, action=ap.BooleanOptionalAction,
help="make stl shape planar instead of curved one")
# configuration file containing presets, preset name
# pair argument - give both or none
parser.add_argument('-c', '--config', nargs=2,
help='pair: name of the config file with presets, name of the preset')
# array of unknown length, all filter names saved inside
parser.add_argument('filters', type=str, nargs='*',
help="list of filter names and their parameters in form [filter_name1 param1=value param2=value filter_name2 param1=value...]")
self.args = parser.parse_args()
def parse_params(self, params):
'''Parse parameters of filters. Set to None if not given.
They are later set to default values in the filter method apply.
'''
# TODO: possibly too bloated, sending all possible params to each filter
possible_params = {"h", "searchWindowSize", "templateWindowSize",
"ksize", "kernel", "sigmaX", "sigmaY",
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
"op", "strength", "amount", "radius", "weight", "channelAxis",
"theta", "sigma", "lambda", "gamma", "psi"}
for key in possible_params:
if params.get(key) is None:
params[key] = None
else:
params[key] = params[key]
def parse_conf(self):
'''Parse configuration file if one was given.
Store filters and their parameters.
'''
# Find preset in config file
if self.preset_name in self.config:
filter_array = self.config[self.preset_name]
# Iterate over filters in preset, store them and their parameters
for i, filter in enumerate(range(len(filter_array)), start=1):
self.filters.append(filter_array[filter]["name"])
self.params[i] = {}
for attribute, value in filter_array[filter].items():
# Filter name isn't needed in here
if attribute != "name":
self.params[i][attribute] = value
self.parse_params(self.params[i])
print("Loaded preset: " + self.preset_name +
" from file: " + self.config_file)
else:
self.error_exit("Preset not found")
def error_exit(self, message):
'''Print error message and exit.
'''
print("ERROR:", message, file=sys.stderr)
exit(1)
#------------------------- FILTERING -------------------------#
def run_filtering(self):
'''Load from input file, store as numpy.array,
process image using filters and save to output file.
'''
self.img = cv.imread(
self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8)
self.height, self.width = self.img.shape
print("Height: " + str(self.height) + " px and width: "
+ str(self.width) + " px", file=sys.stderr)
size = (self.width/self.dpi, self.height/self.dpi)
fig = plt.figure(figsize=size, frameon=False, dpi=self.dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
if self.mirror is True:
self.mirror_image()
# Apply all filters and save image
self.apply_filters()
self.save_image(fig, ax)
plt.close()
def mirror_image(self):
'''Mirror image using opencv, should be used if we want a positive model.
'''
print("Mirroring image", file=sys.stderr)
self.img = cv.flip(self.img, 1) # 1 for vertical mirror
def apply_filters(self):
'''Apply filters to image one by one.
In case none were given, pass and save original image to the output file.
'''
if len(self.filters) == 0:
pass
else:
# Apply all filters
for i, filter_name in enumerate(self.filters):
# Get filter class from filter.py, use the apply method
filter = getattr(flt, filter_name)
filter.apply(self, self.params[i+1])
def save_image(self, fig, ax):
'''Save processed image to the output file.
'''
print("Saving image to", self.output_file, file=sys.stderr)
# Colormap must be set to grayscale to avoid color mismatch.
ax.imshow(self.img, cmap="gray")
fig.savefig(fname=self.output_file, dpi=self.dpi)
#------------------------- STL GENERATION -------------------------#
def run_stl(self):
'''Make heightmap, create mesh and save as stl file.
'''
self.prepare_heightmap()
if self.mode == "2d":
self.make_stl_planar()
elif self.mode == "3d":
self.make_stl_curved()
else:
self.error_exit("Mode not supported")
plt.show()
print(f"Saving model to ", self.stl_file, file=sys.stderr)
self.save_stl()
def prepare_heightmap(self):
'''Modify image values to get usable height/depth values.
Check validity of dimension parameters.
'''
# TODO: redo, too complicated, add extra params, redo checks
if self.img.dtype == np.float32 or self.img.dtype == np.float64:
print("Converting to uint8", file=sys.stderr)
self.img = self.img * 255
self.img = self.img.astype(np.uint8)
print("Creating mesh", file=sys.stderr)
if self.mode == "2d":
if self.height_base <= 0:
self.error_exit("Depth of plate height must be positive")
if self.height_line + self.height_base <= 0:
self.error_exit("Line depth must be less than plate thickness")
# Transform image values to get a heightmap
self.img = (self.height_base + (1 - self.img/255)
* self.height_line)
if self.mode == "3d":
# TODO check curvature values and print info
# TODO: copy pasta code, remove
# Transform image values to get a heightmap
self.img = (1 - self.img/255) * self.height_line
def append_faces(self, faces, c):
# Function to add faces to the list
faces.append([c, c + 1, c + 2])
faces.append([c + 1, c + 3, c + 2])
return c + 4
def make_stl_planar(self):
'''Create mesh from meshgrid.
Create vertices from meshgrid, add depth values from image.
Create faces from vertices. Add vectors and faces to the model.
From wikipedia.org/wiki/STL_(file_format):
ascii stl format consists of repeating structures:
facet normal ni nj nk # normal vector
outer loop
vertex v1x v1y v1z # vertex 1
vertex v2x v2y v2z # vertex 2
vertex v3x v3y v3z # vertex 3
endloop
endfacet
'''
# This sets the size of stl model and number of subdivisions / triangles
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
self.meshgrid_2d = np.meshgrid(x, y)
# Add the image matrix to the 2D meshgrid and create 1D array of 3D pointsd
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_2d))).T
z = (self.img / 10).reshape(-1, 1)
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
# Convert 1D array back to matrix of 3D points
vertex_arr = vertex_arr.reshape(self.height, self.width, 3)
count = 0
vertices = []
faces = []
# Iterate over all vertices, create faces
for i in range(self.height - 1):
for j in range(self.width - 1):
vertices.append([vertex_arr[i][j]])
vertices.append([vertex_arr[i][j+1]])
vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]])
count = self.append_faces(faces, count)
# Add faces for the backside of the lithophane
null_arr = np.copy(vertex_arr)
for i in range(self.height):
for j in range(self.width):
null_arr[i][j][2] = 0
# Back side faces
for i in range(self.height - 1):
for j in range(self.width - 1):
vertices.append([null_arr[i][j]])
vertices.append([null_arr[i+1][j]])
vertices.append([null_arr[i][j+1]])
vertices.append([null_arr[i+1][j+1]])
count = self.append_faces(faces, count)
# Horizontal side faces
for i in range(self.height - 1):
vertices.append([vertex_arr[i][0]])
vertices.append([vertex_arr[i+1][0]])
vertices.append([null_arr[i][0]])
vertices.append([null_arr[i+1][0]])
count = self.append_faces(faces, count)
max = self.width - 1
vertices.append([vertex_arr[i+1][max]])
vertices.append([vertex_arr[i][max]])
vertices.append([null_arr[i+1][max]])
vertices.append([null_arr[i][max]])
count = self.append_faces(faces, count)
# Vertical side faces
for j in range(self.width - 1):
vertices.append([vertex_arr[0][j+1]])
vertices.append([vertex_arr[0][j]])
vertices.append([null_arr[0][j+1]])
vertices.append([null_arr[0][j]])
count = self.append_faces(faces, count)
max = self.height - 1
vertices.append([vertex_arr[max][j]])
vertices.append([vertex_arr[max][j+1]])
vertices.append([null_arr[max][j]])
vertices.append([null_arr[max][j+1]])
count = self.append_faces(faces, count)
# Convert to numpy arrays
faces = np.array(faces)
vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3)
self.stl_lithophane = mesh.Mesh(
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces):
for j in range(3):
self.stl_lithophane.vectors[i][j] = vertices[face[j], :]
def make_stl_curved(self):
'''Map fingerprint to finger model.
'''
# TODO: if this is the same as 2D, move to heightmap to reduce duplicate code
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
self.meshgrid_3d = np.meshgrid(x, y)
# Method 1 - logspace and logarithmic curve
'''z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7)
z2 = np.logspace(10, 0, int(np.floor(self.width / 2)), base=0.7)
ztemp = 5*np.concatenate((z1, z2))
z = np.array([])
for i in range(self.height):
z = np.concatenate((z, ztemp + 25*(((i+50)/20)**(-1/2))))
z = z.reshape(-1, 1)
self.img = (self.img / 10).reshape(-1, 1)
z += self.img'''
# Method 2 - 2 ellipses
z = np.array([])
for x in range(self.width):
z = np.append(z, np.sqrt(1 - (2*x/self.width - 1)**2)
* (self.curv_rate_x**2))
z = np.tile(z, (self.height, 1))
for y in range(self.height):
new = np.sqrt((1 - ((self.height - y)/self.height)**2)
* (self.curv_rate_y**2))
z[y] = z[y] + new
# TODO: clip responsivelly
bottom = z[0][math.floor(self.width/2)]
#top = self.curv_rate_x**2 + self.curv_rate_y
#np.clip(z, bottom, top, out=z)
z = z.reshape(-1, 1)
self.img = (self.img / 10).reshape(-1, 1)
z += self.img
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_3d))).T
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
vertex_arr = vertex_arr.reshape(self.height, self.width, 3)
count = 0
vertices = []
faces = []
min_point = 0
for i in range(self.height - 1):
if vertex_arr[i][0][2] <= bottom:
min_point = i
# Add faces for the backside of the lithophane
vec_side = (vertex_arr[self.height-1][0][2] -
vertex_arr[min_point][0][2]) / (self.height - min_point)
null_arr = np.copy(vertex_arr)
for i in range(self.height):
for j in range(self.width):
null_arr[i][j][2] = 0
#null_arr[i][j][2] = bottom + vec_side * i
# for smaller mesh
# Iterate over all vertices, create faces
for i in range(self.height - 1):
for j in range(self.width - 1):
if (vertex_arr[i][j][2] <= null_arr[i][j][2]
or vertex_arr[i+1][j][2] <= null_arr[i+1][j][2]
or vertex_arr[i][j+1][2] <= null_arr[i][j+1][2]
or vertex_arr[i+1][j+1][2] <= null_arr[i+1][j+1][2]):
continue
vertices.append([vertex_arr[i][j]])
vertices.append([vertex_arr[i][j+1]])
vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]])
count = self.append_faces(faces, count)
# Rotated back side faces
for i in range(self.height - 1):
for j in range(self.width - 1):
if (vertex_arr[i][j][2] <= null_arr[i][j][2]):
continue
vertices.append([null_arr[i][j]])
vertices.append([null_arr[i+1][j]])
vertices.append([null_arr[i][j+1]])
vertices.append([null_arr[i+1][j+1]])
count = self.append_faces(faces, count)
# Horizontal side faces
for i in range(self.height - 1): # right
#if (vertex_arr[i][0][2] < null_arr[i][0][2]):
# continue
vertices.append([vertex_arr[i][0]])
vertices.append([vertex_arr[i+1][0]])
vertices.append([null_arr[i][0]])
vertices.append([null_arr[i+1][0]])
count = self.append_faces(faces, count)
for i in range(self.height - 1): # left
max = self.width - 1
#if (vertex_arr[i][max][2] < null_arr[i][max][2]):
# continue
vertices.append([vertex_arr[i+1][max]])
vertices.append([vertex_arr[i][max]])
vertices.append([null_arr[i+1][max]])
vertices.append([null_arr[i][max]])
count = self.append_faces(faces, count)
# Vertical side faces
for j in range(self.width - 1): # top
#if (vertex_arr[0][j][2] < null_arr[0][j][2]):
# continue
vertices.append([vertex_arr[0][j+1]])
vertices.append([vertex_arr[0][j]])
vertices.append([null_arr[0][j+1]])
vertices.append([null_arr[0][j]])
count = self.append_faces(faces, count)
for j in range(self.width - 1): # bottom
max = self.height - 1
#if (vertex_arr[max][j][2] < null_arr[max][j][2]):
# continue
vertices.append([vertex_arr[max][j]])
vertices.append([vertex_arr[max][j+1]])
vertices.append([null_arr[max][j]])
vertices.append([null_arr[max][j+1]])
count = self.append_faces(faces, count)
# Convert to numpy arrays
faces = np.array(faces)
vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3)
self.mesh_finger = mesh.Mesh(
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces):
for j in range(3):
self.mesh_finger.vectors[i][j] = vertices[face[j], :]
# print(self.mesh_finger.normals)
def save_stl(self):
'''Save final mesh to stl file.
'''
if self.mode == "3d":
self.mesh_finger.save(self.stl_file)
else:
self.stl_lithophane.save(self.stl_file)
# run the application
image = app()