// Profilometer.cpp : This file contains the 'main' function. Program execution begins and ends there. // //Program flow: // Initialize PMeter // Set geometry constants - sigma, dist, radius // Set camera constants - pixel dimensions, fov angles // Precalculate other constants - trig expressions and such // ---Precalculate curvature correction--- // Nevermind, this varies with horizontal position and therefore both x and y, would need full screen 2d array // Maybe there's an approximation that's fixed in one of those and varies in the other? // Per frame: // Preprocessing - Calculate threshold for identifying intensity spikes // Build incidence pixel (IP) array // Laser likely centered, may not extend across whole fov -> start in middle of x range, not edge // Prioritize neighborhood search to cut down number of operations // Option 1: maximal intensity pixel is IP // Option 2: find groups of pixels above threshold, use weighted average of the segment as IP // Calculate real space depth of IPs // Apply curvature correction // Return depth array // #define _USE_MATH_DEFINES #include #include #include class PMeter { public: int height, width; // camera pixel dimensions double alpha, beta; // camera angle dimensions // full fov is 2* this angle, vertical and horizontal respectively // 0 < alpha < sigma // alpha >= sigma causes phi singularity // 0 < beta < pi/2 double sigma; // angle between laser plane and camera center line // 0 < sigma < pi/2 double dist; // distance between camera and laser double phi, theta; // coordinate angles void fastinit(int h, int w, double a, double b, double s, double d, double p, double t) { //TODO: overload this // class variable initializer height = h; width = w; alpha = a; beta = b; sigma = s; dist = d; phi = p; theta = t; } void print_conf() { std::cout << "Height: " << height << "\n"; std::cout << "Width: " << width << "\n"; std::cout << "Alpha: " << alpha << "\n"; std::cout << "Beta: " << beta << "\n"; std::cout << "Sigma: " << sigma << "\n"; std::cout << "Dist: " << dist << "\n"; std::cout << "Phi: " << phi << "\n"; std::cout << "Theta: " << theta << "\n"; } double get_phi(int y) { // phi is angle below camera center line of given y coordinate - above center is negative // returns phi at pixel center, removing the +1 shifts this to low edge // alpha >= phi >= -alpha phi = atan(tan(alpha)/height * (2 * y + 1 - height)); return phi; } double get_theta(int x) { // theta is horizontal angle between center line and given x coordinate // returns theta at pixel center, removing the -1 shifts this to low edge // beta >= theta >= -beta // if viewed from above, positive theta means pixel vector is to the left of center, i.e. x < width/2 theta = atan(tan(beta) / width * (width - 2 * x - 1)); return theta; } double pixel_delta_approx() { // returns approximation of change in elevation from y to y+1 // assumes that epsilon=0 double delta = 2 * dist * tan(alpha) * cos(phi) / (height * sin(sigma + phi) * sin(sigma + phi)); return delta; } double pixel_delta_exact() { // returns exact change in elevation from y to y+1 double tan_eps = 2 * tan(alpha) * cos(phi) * cos(phi) / (height + 2 * tan(alpha) * sin(phi) * cos(phi)); std::cout << "Tan(eps) at phi=" << phi << ": " << tan_eps << "\n"; double delta = 2 * dist * tan(alpha) * cos(phi) * (cos(phi) - sin(phi) * tan_eps) / (height * sin(sigma + phi) * (sin(sigma + phi) + cos(sigma + phi) * tan_eps)); return delta; } double get_elevation() { // elevation above horizontal camera plane // singularity if phi = -sigma // flat projection surface -> x coordinate irrelevant double e = dist / tan(phi + sigma); return e; } double get_horizontal_dist() { // get horizontal distance from center line, same sign convention as theta // generally depends on both x and y double f = dist * tan(theta) / sin(sigma + phi); return f; } void approx_test_phi(double new_phi) { // print exact and approximate delta and the error at given phi // changes phi phi = new_phi; double da = pixel_delta_approx(); std::cout << "Delta approx.: " << da << "\n"; double de = pixel_delta_exact(); std::cout << "Delta exact: " << de << "\n"; std::cout << "Error absolute: " << (de - da) << "\n"; std::cout << "Error relative: " << (de - da)/de << "\n"; } void edge_test() { // run approx_test_phi at bottom edge, phi=0, and top edge // preserves phi double old_phi = phi; std::cout << "\nMax phi\n"; approx_test_phi(alpha); std::cout << "\nZero phi\n"; approx_test_phi(0.0); std::cout << "\nMin phi\n"; approx_test_phi(-1*alpha); phi = old_phi; } }; int main() { PMeter PM; PM.fastinit(1000, 1000, M_PI / 6, M_PI / 6, M_PI / 3, 5.0, 0.0, 0.0); PM.print_conf(); std::cout << "phi at y=50 is " << PM.get_phi(50) << "\n"; PM.edge_test(); ////cv::Mat image = cv::imread("./PM_test_0.bmp"); //cv::Mat image = cv::imread("./PM_test_1.png"); ////cv::Mat image = cv::imread("./PM_test_2.png"); // //cv::String windowName = "imtest"; //cv::namedWindow(windowName); //cv::imshow(windowName, image); //cv::waitKey(0); std::cout << "\n===\nEnd of main()\n===\n"; }