// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. // Do not include this file directly. Please include "onnxruntime_cxx_api.h" instead. // If interested in trying out features of the new experimental C++ API, include "experimental_onnxruntime_cxx_api.h" instead. // // These are the inline implementations of the C++ header APIs. They're in this separate file as to not clutter // the main C++ file with implementation details. #include #include #include #include // Convert OrtStatus to Ort::Status and return // instead of throwing #define ORT_CXX_RETURN_ON_API_FAIL(expression) \ { \ auto ort_status = (expression); \ if (ort_status) { \ return Ort::Status(ort_status); \ } \ } #ifdef __cpp_if_constexpr #define ORT_CXX_IF_CONSTEXPR if constexpr #else #define ORT_CXX_IF_CONSTEXPR if #endif namespace Ort { namespace detail { inline void ThrowStatus(const Status& st) { std::string error_message = st.GetErrorMessage(); OrtErrorCode error_code = st.GetErrorCode(); ORT_CXX_API_THROW(std::move(error_message), error_code); } } // namespace detail inline void ThrowOnError(OrtStatus* ort_status) { if (ort_status) { Ort::Status st(ort_status); detail::ThrowStatus(st); } } inline void ThrowOnError(const Status& st) { if (st) { detail::ThrowStatus(st); } } inline Status::Status(OrtStatus* status) noexcept : Base{status} { } inline Status::Status(const std::exception& e) noexcept { p_ = GetApi().CreateStatus(ORT_FAIL, e.what()); } inline Status::Status(const Exception& e) noexcept { p_ = GetApi().CreateStatus(e.GetOrtErrorCode(), e.what()); } inline Status::Status(const char* message, OrtErrorCode code) noexcept { p_ = GetApi().CreateStatus(code, message); } inline std::string Status::GetErrorMessage() const { std::string message(GetApi().GetErrorMessage(p_)); return message; } inline OrtErrorCode Status::GetErrorCode() const { return GetApi().GetErrorCode(p_); } inline bool Status::IsOK() const noexcept { return (p_ == nullptr); } // This template converts a C++ type into it's ONNXTensorElementDataType template struct TypeToTensorType; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E4M3FN; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E4M3FNUZ; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E5M2; }; template <> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E5M2FNUZ; }; inline bool BFloat16_t::operator==(const BFloat16_t& rhs) const noexcept { if (IsNaN() || rhs.IsNaN()) { // IEEE defines that NaN is not equal to anything, including itself. return false; } return val == rhs.val; } inline bool BFloat16_t::operator<(const BFloat16_t& rhs) const noexcept { if (IsNaN() || rhs.IsNaN()) { // IEEE defines that NaN is unordered with respect to everything, including itself. return false; } const bool left_is_negative = IsNegative(); if (left_is_negative != rhs.IsNegative()) { // When the signs of left and right differ, we know that left is less than right if it is // the negative value. The exception to this is if both values are zero, in which case IEEE // says they should be equal, even if the signs differ. return left_is_negative && !AreZero(*this, rhs); } return (val != rhs.val) && ((val < rhs.val) ^ left_is_negative); } inline MemoryAllocation::MemoryAllocation(OrtAllocator* allocator, void* p, size_t size) : allocator_(allocator), p_(p), size_(size) { } inline MemoryAllocation::~MemoryAllocation() { if (p_ != nullptr) { // We do not throw out of destructor auto ret = GetApi().AllocatorFree(allocator_, p_); static_cast(ret); } } inline MemoryAllocation::MemoryAllocation(MemoryAllocation&& o) noexcept : allocator_(nullptr), p_(nullptr), size_(0) { *this = std::move(o); } inline MemoryAllocation& MemoryAllocation::operator=(MemoryAllocation&& o) noexcept { OrtAllocator* alloc = nullptr; void* p = nullptr; size_t sz = 0; // Swap out this std::swap(alloc, allocator_); std::swap(p, p_); std::swap(sz, size_); // Swap with incoming std::swap(allocator_, o.allocator_); std::swap(p_, o.p_); std::swap(size_, o.size_); // Destroy this instance if needed MemoryAllocation this_alloc(alloc, p, sz); return *this; } namespace detail { template inline void* AllocatorImpl::Alloc(size_t size) { void* out; ThrowOnError(GetApi().AllocatorAlloc(this->p_, size, &out)); return out; } template inline MemoryAllocation AllocatorImpl::GetAllocation(size_t size) { void* out; ThrowOnError(GetApi().AllocatorAlloc(this->p_, size, &out)); MemoryAllocation result(this->p_, out, size); return result; } template inline void AllocatorImpl::Free(void* p) { ThrowOnError(GetApi().AllocatorFree(this->p_, p)); } template inline ConstMemoryInfo AllocatorImpl::GetInfo() const { const OrtMemoryInfo* out; ThrowOnError(GetApi().AllocatorGetInfo(this->p_, &out)); return ConstMemoryInfo{out}; } } // namespace detail inline AllocatorWithDefaultOptions::AllocatorWithDefaultOptions() { ThrowOnError(GetApi().GetAllocatorWithDefaultOptions(&this->p_)); } inline Allocator::Allocator(const Session& sess, const OrtMemoryInfo* mem_info) { ThrowOnError(GetApi().CreateAllocator(sess, mem_info, &this->p_)); } namespace detail { template inline std::string MemoryInfoImpl::GetAllocatorName() const { const char* name = nullptr; ThrowOnError(GetApi().MemoryInfoGetName(this->p_, &name)); return std::string(name); } template inline OrtAllocatorType MemoryInfoImpl::GetAllocatorType() const { OrtAllocatorType type; ThrowOnError(GetApi().MemoryInfoGetType(this->p_, &type)); return type; } template inline int MemoryInfoImpl::GetDeviceId() const { int id = 0; ThrowOnError(GetApi().MemoryInfoGetId(this->p_, &id)); return id; } template inline OrtMemoryInfoDeviceType MemoryInfoImpl::GetDeviceType() const { OrtMemoryInfoDeviceType type; GetApi().MemoryInfoGetDeviceType(this->p_, &type); return type; } template inline OrtMemType MemoryInfoImpl::GetMemoryType() const { OrtMemType type; ThrowOnError(GetApi().MemoryInfoGetMemType(this->p_, &type)); return type; } template template inline bool MemoryInfoImpl::operator==(const MemoryInfoImpl& o) const { int comp_result = 0; ThrowOnError(Ort::GetApi().CompareMemoryInfo(this->p_, o, &comp_result)); return comp_result == 0; } } // namespace detail inline MemoryInfo MemoryInfo::CreateCpu(OrtAllocatorType type, OrtMemType mem_type) { OrtMemoryInfo* p; ThrowOnError(GetApi().CreateCpuMemoryInfo(type, mem_type, &p)); return MemoryInfo(p); } inline MemoryInfo::MemoryInfo(const char* name, OrtAllocatorType type, int id, OrtMemType mem_type) { ThrowOnError(GetApi().CreateMemoryInfo(name, type, id, mem_type, &this->p_)); } namespace detail { template inline std::vector ConstIoBindingImpl::GetOutputNames() const { AllocatorWithDefaultOptions allocator; return binding_utils::GetOutputNamesHelper(this->p_, allocator); } template inline std::vector ConstIoBindingImpl::GetOutputNames(OrtAllocator* allocator) const { return binding_utils::GetOutputNamesHelper(this->p_, allocator); } template inline std::vector ConstIoBindingImpl::GetOutputValues() const { AllocatorWithDefaultOptions allocator; return binding_utils::GetOutputValuesHelper(this->p_, allocator); } template inline std::vector ConstIoBindingImpl::GetOutputValues(OrtAllocator* allocator) const { return binding_utils::GetOutputValuesHelper(this->p_, allocator); } template inline void IoBindingImpl::BindInput(const char* name, const Value& value) { ThrowOnError(GetApi().BindInput(this->p_, name, value)); } template inline void IoBindingImpl::BindOutput(const char* name, const Value& value) { ThrowOnError(GetApi().BindOutput(this->p_, name, value)); } template inline void IoBindingImpl::BindOutput(const char* name, const OrtMemoryInfo* mem_info) { ThrowOnError(GetApi().BindOutputToDevice(this->p_, name, mem_info)); } template inline void IoBindingImpl::ClearBoundInputs() { GetApi().ClearBoundInputs(this->p_); } template inline void IoBindingImpl::ClearBoundOutputs() { GetApi().ClearBoundOutputs(this->p_); } template inline void IoBindingImpl::SynchronizeInputs() { ThrowOnError(GetApi().SynchronizeBoundInputs(this->p_)); } template inline void IoBindingImpl::SynchronizeOutputs() { ThrowOnError(GetApi().SynchronizeBoundOutputs(this->p_)); } namespace binding_utils { inline std::vector GetOutputNamesHelper(const OrtIoBinding* binding, OrtAllocator* allocator) { std::vector result; auto free_fn = detail::AllocatedFree(allocator); using Ptr = std::unique_ptr; char* buffer = nullptr; size_t* lengths = nullptr; size_t count = 0; ThrowOnError(GetApi().GetBoundOutputNames(binding, allocator, &buffer, &lengths, &count)); if (count == 0) { return result; } Ptr buffer_g(buffer, free_fn); Ptr lengths_g(lengths, free_fn); result.reserve(count); for (size_t i = 0; i < count; ++i) { auto sz = *lengths; result.emplace_back(buffer, sz); buffer += sz; ++lengths; } return result; } inline std::vector GetOutputValuesHelper(const OrtIoBinding* binding, OrtAllocator* allocator) { std::vector result; size_t owned = 0; size_t output_count = 0; // Lambda to release the buffer when no longer needed and // make sure that we destroy all instances on exception auto free_fn = [&owned, &output_count, allocator](OrtValue** buffer) { if (buffer) { while (owned < output_count) { auto* p = buffer + owned++; GetApi().ReleaseValue(*p); } allocator->Free(allocator, buffer); } }; using Ptr = std::unique_ptr; OrtValue** output_buffer = nullptr; ThrowOnError(GetApi().GetBoundOutputValues(binding, allocator, &output_buffer, &output_count)); if (output_count == 0) { return result; } Ptr buffer_g(output_buffer, free_fn); result.reserve(output_count); for (size_t i = 0; i < output_count; ++i) { result.emplace_back(output_buffer[i]); ++owned; } return result; } } // namespace binding_utils } // namespace detail inline IoBinding::IoBinding(Session& session) { ThrowOnError(GetApi().CreateIoBinding(session, &this->p_)); } inline ArenaCfg::ArenaCfg(size_t max_mem, int arena_extend_strategy, int initial_chunk_size_bytes, int max_dead_bytes_per_chunk) { ThrowOnError(GetApi().CreateArenaCfg(max_mem, arena_extend_strategy, initial_chunk_size_bytes, max_dead_bytes_per_chunk, &p_)); } inline ThreadingOptions::ThreadingOptions() { ThrowOnError(GetApi().CreateThreadingOptions(&p_)); } inline ThreadingOptions& ThreadingOptions::SetGlobalIntraOpNumThreads(int intra_op_num_threads) { ThrowOnError(GetApi().SetGlobalIntraOpNumThreads(p_, intra_op_num_threads)); return *this; } inline ThreadingOptions& ThreadingOptions::SetGlobalInterOpNumThreads(int inter_op_num_threads) { ThrowOnError(GetApi().SetGlobalInterOpNumThreads(p_, inter_op_num_threads)); return *this; } inline ThreadingOptions& ThreadingOptions::SetGlobalSpinControl(int allow_spinning) { ThrowOnError(GetApi().SetGlobalSpinControl(p_, allow_spinning)); return *this; } inline ThreadingOptions& ThreadingOptions::SetGlobalDenormalAsZero() { ThrowOnError(GetApi().SetGlobalDenormalAsZero(p_)); return *this; } inline ThreadingOptions& ThreadingOptions::SetGlobalCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn) { ThrowOnError(GetApi().SetGlobalCustomCreateThreadFn(p_, ort_custom_create_thread_fn)); return *this; } inline ThreadingOptions& ThreadingOptions::SetGlobalCustomThreadCreationOptions(void* ort_custom_thread_creation_options) { ThrowOnError(GetApi().SetGlobalCustomThreadCreationOptions(p_, ort_custom_thread_creation_options)); return *this; } inline ThreadingOptions& ThreadingOptions::SetGlobalCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn) { ThrowOnError(GetApi().SetGlobalCustomJoinThreadFn(p_, ort_custom_join_thread_fn)); return *this; } inline Env::Env(OrtLoggingLevel logging_level, _In_ const char* logid) { ThrowOnError(GetApi().CreateEnv(logging_level, logid, &p_)); if (strcmp(logid, "onnxruntime-node") == 0) { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS)); } else { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS)); } } inline Env::Env(OrtLoggingLevel logging_level, const char* logid, OrtLoggingFunction logging_function, void* logger_param) { ThrowOnError(GetApi().CreateEnvWithCustomLogger(logging_function, logger_param, logging_level, logid, &p_)); if (strcmp(logid, "onnxruntime-node") == 0) { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS)); } else { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS)); } } inline Env::Env(const OrtThreadingOptions* tp_options, OrtLoggingLevel logging_level, _In_ const char* logid) { ThrowOnError(GetApi().CreateEnvWithGlobalThreadPools(logging_level, logid, tp_options, &p_)); if (strcmp(logid, "onnxruntime-node") == 0) { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS)); } else { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS)); } } inline Env::Env(const OrtThreadingOptions* tp_options, OrtLoggingFunction logging_function, void* logger_param, OrtLoggingLevel logging_level, _In_ const char* logid) { ThrowOnError(GetApi().CreateEnvWithCustomLoggerAndGlobalThreadPools(logging_function, logger_param, logging_level, logid, tp_options, &p_)); if (strcmp(logid, "onnxruntime-node") == 0) { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS)); } else { ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS)); } } inline Env& Env::EnableTelemetryEvents() { ThrowOnError(GetApi().EnableTelemetryEvents(p_)); return *this; } inline Env& Env::DisableTelemetryEvents() { ThrowOnError(GetApi().DisableTelemetryEvents(p_)); return *this; } inline Env& Env::UpdateEnvWithCustomLogLevel(OrtLoggingLevel log_severity_level) { ThrowOnError(GetApi().UpdateEnvWithCustomLogLevel(p_, log_severity_level)); return *this; } inline Env& Env::CreateAndRegisterAllocator(const OrtMemoryInfo* mem_info, const OrtArenaCfg* arena_cfg) { ThrowOnError(GetApi().CreateAndRegisterAllocator(p_, mem_info, arena_cfg)); return *this; } inline Env& Env::CreateAndRegisterAllocatorV2(const std::string& provider_type, const OrtMemoryInfo* mem_info, const std::unordered_map& options, const OrtArenaCfg* arena_cfg) { std::vector keys, values; auto num_entries = options.size(); if (num_entries > 0) { keys.reserve(num_entries); values.reserve(num_entries); for (const auto& entry : options) { keys.push_back(entry.first.c_str()); values.push_back(entry.second.c_str()); } } ThrowOnError(GetApi().CreateAndRegisterAllocatorV2(p_, provider_type.c_str(), mem_info, arena_cfg, keys.data(), values.data(), num_entries)); return *this; } inline CustomOpDomain::CustomOpDomain(const char* domain) { ThrowOnError(GetApi().CreateCustomOpDomain(domain, &p_)); } inline void CustomOpDomain::Add(const OrtCustomOp* op) { ThrowOnError(GetApi().CustomOpDomain_Add(p_, op)); } inline RunOptions::RunOptions() { ThrowOnError(GetApi().CreateRunOptions(&p_)); } inline RunOptions& RunOptions::SetRunLogVerbosityLevel(int level) { ThrowOnError(GetApi().RunOptionsSetRunLogVerbosityLevel(p_, level)); return *this; } inline RunOptions& RunOptions::SetRunLogSeverityLevel(int level) { ThrowOnError(GetApi().RunOptionsSetRunLogSeverityLevel(p_, level)); return *this; } inline int RunOptions::GetRunLogVerbosityLevel() const { int out; ThrowOnError(GetApi().RunOptionsGetRunLogVerbosityLevel(p_, &out)); return out; } inline int RunOptions::GetRunLogSeverityLevel() const { int out; ThrowOnError(GetApi().RunOptionsGetRunLogSeverityLevel(p_, &out)); return out; } inline RunOptions& RunOptions::SetRunTag(const char* run_tag) { ThrowOnError(GetApi().RunOptionsSetRunTag(p_, run_tag)); return *this; } inline const char* RunOptions::GetRunTag() const { const char* out; ThrowOnError(GetApi().RunOptionsGetRunTag(p_, &out)); return out; } inline RunOptions& RunOptions::AddConfigEntry(const char* config_key, const char* config_value) { ThrowOnError(GetApi().AddRunConfigEntry(p_, config_key, config_value)); return *this; } inline RunOptions& RunOptions::SetTerminate() { ThrowOnError(GetApi().RunOptionsSetTerminate(p_)); return *this; } inline RunOptions& RunOptions::UnsetTerminate() { ThrowOnError(GetApi().RunOptionsUnsetTerminate(p_)); return *this; } namespace detail { template inline Ort::SessionOptions ConstSessionOptionsImpl::Clone() const { OrtSessionOptions* out; ThrowOnError(GetApi().CloneSessionOptions(this->p_, &out)); return SessionOptions{out}; } template inline std::string ConstSessionOptionsImpl::GetConfigEntry(const char* config_key) const { size_t size = 0; // Feed nullptr for the data buffer to query the true size of the string value Ort::ThrowOnError(GetApi().GetSessionConfigEntry(this->p_, config_key, nullptr, &size)); std::string out; out.resize(size); Ort::ThrowOnError(GetApi().GetSessionConfigEntry(this->p_, config_key, &out[0], &size)); out.resize(size - 1); // remove the terminating character '\0' return out; } template inline bool ConstSessionOptionsImpl::HasConfigEntry(const char* config_key) const { int out = 0; Ort::ThrowOnError(GetApi().HasSessionConfigEntry(this->p_, config_key, &out)); return static_cast(out); } template inline std::string ConstSessionOptionsImpl::GetConfigEntryOrDefault(const char* config_key, const std::string& def) { if (!this->HasConfigEntry(config_key)) { return def; } return this->GetConfigEntry(config_key); } template inline SessionOptionsImpl& SessionOptionsImpl::SetIntraOpNumThreads(int intra_op_num_threads) { ThrowOnError(GetApi().SetIntraOpNumThreads(this->p_, intra_op_num_threads)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetInterOpNumThreads(int inter_op_num_threads) { ThrowOnError(GetApi().SetInterOpNumThreads(this->p_, inter_op_num_threads)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetGraphOptimizationLevel(GraphOptimizationLevel graph_optimization_level) { ThrowOnError(GetApi().SetSessionGraphOptimizationLevel(this->p_, graph_optimization_level)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetDeterministicCompute(bool value) { ThrowOnError(GetApi().SetDeterministicCompute(this->p_, value)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetOptimizedModelFilePath(const ORTCHAR_T* optimized_model_filepath) { ThrowOnError(GetApi().SetOptimizedModelFilePath(this->p_, optimized_model_filepath)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::EnableProfiling(const ORTCHAR_T* profile_file_prefix) { ThrowOnError(GetApi().EnableProfiling(this->p_, profile_file_prefix)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::DisableProfiling() { ThrowOnError(GetApi().DisableProfiling(this->p_)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::EnableOrtCustomOps() { ThrowOnError(GetApi().EnableOrtCustomOps(this->p_)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::EnableMemPattern() { ThrowOnError(GetApi().EnableMemPattern(this->p_)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::DisableMemPattern() { ThrowOnError(GetApi().DisableMemPattern(this->p_)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::EnableCpuMemArena() { ThrowOnError(GetApi().EnableCpuMemArena(this->p_)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::DisableCpuMemArena() { ThrowOnError(GetApi().DisableCpuMemArena(this->p_)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetExecutionMode(ExecutionMode execution_mode) { ThrowOnError(GetApi().SetSessionExecutionMode(this->p_, execution_mode)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetLogId(const char* logid) { ThrowOnError(GetApi().SetSessionLogId(this->p_, logid)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetLogSeverityLevel(int level) { ThrowOnError(GetApi().SetSessionLogSeverityLevel(this->p_, level)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::Add(OrtCustomOpDomain* custom_op_domain) { ThrowOnError(GetApi().AddCustomOpDomain(this->p_, custom_op_domain)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AddConfigEntry(const char* config_key, const char* config_value) { ThrowOnError(GetApi().AddSessionConfigEntry(this->p_, config_key, config_value)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AddInitializer(const char* name, const OrtValue* ort_val) { ThrowOnError(GetApi().AddInitializer(this->p_, name, ort_val)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::DisablePerSessionThreads() { ThrowOnError(GetApi().DisablePerSessionThreads(this->p_)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AddExternalInitializers(const std::vector& names, const std::vector& ort_values) { const size_t inputs_num = names.size(); if (inputs_num != ort_values.size()) { ORT_CXX_API_THROW("Expecting names and ort_values to have the same length", ORT_INVALID_ARGUMENT); } std::vector names_ptr; std::vector ort_values_ptrs; names_ptr.reserve(inputs_num); ort_values_ptrs.reserve(inputs_num); for (size_t i = 0; i < inputs_num; ++i) { names_ptr.push_back(names[i].c_str()); ort_values_ptrs.push_back(ort_values[i]); } ThrowOnError(GetApi().AddExternalInitializers(this->p_, names_ptr.data(), ort_values_ptrs.data(), inputs_num)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AddExternalInitializersFromFilesInMemory(const std::vector>& file_names, const std::vector& buffer_array, const std::vector& file_lengths) { const size_t inputs_num = file_names.size(); if (inputs_num != buffer_array.size()) { ORT_CXX_API_THROW("Expecting names and buffer_array to have the same length", ORT_INVALID_ARGUMENT); } if (inputs_num != file_lengths.size()) { ORT_CXX_API_THROW("Expecting names and file_lengths to have the same length", ORT_INVALID_ARGUMENT); } std::vector names_ptr; names_ptr.reserve(inputs_num); for (size_t i = 0; i < inputs_num; ++i) { names_ptr.push_back(file_names[i].c_str()); } ThrowOnError(GetApi().AddExternalInitializersFromFilesInMemory(this->p_, names_ptr.data(), buffer_array.data(), file_lengths.data(), inputs_num)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_CUDA(const OrtCUDAProviderOptions& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_CUDA(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_CUDA_V2(const OrtCUDAProviderOptionsV2& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_CUDA_V2(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_ROCM(const OrtROCMProviderOptions& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_ROCM(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_TensorRT(const OrtTensorRTProviderOptions& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_TensorRT(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_TensorRT_V2(const OrtTensorRTProviderOptionsV2& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_TensorRT_V2(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_MIGraphX(const OrtMIGraphXProviderOptions& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_MIGraphX(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_CANN(const OrtCANNProviderOptions& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_CANN(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_Dnnl(const OrtDnnlProviderOptions& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_Dnnl(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider( const std::string& provider_name, const std::unordered_map& provider_options) { auto num_entries = provider_options.size(); std::vector keys, values; if (num_entries > 0) { keys.reserve(num_entries); values.reserve(num_entries); for (const auto& entry : provider_options) { keys.push_back(entry.first.c_str()); values.push_back(entry.second.c_str()); } } ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider(this->p_, provider_name.c_str(), keys.data(), values.data(), num_entries)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn) { ThrowOnError(GetApi().SessionOptionsSetCustomCreateThreadFn(this->p_, ort_custom_create_thread_fn)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetCustomThreadCreationOptions(void* ort_custom_thread_creation_options) { ThrowOnError(GetApi().SessionOptionsSetCustomThreadCreationOptions(this->p_, ort_custom_thread_creation_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::SetCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn) { ThrowOnError(GetApi().SessionOptionsSetCustomJoinThreadFn(this->p_, ort_custom_join_thread_fn)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_OpenVINO(const OrtOpenVINOProviderOptions& provider_options) { ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_OpenVINO(this->p_, &provider_options)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_OpenVINO_V2(const std::unordered_map& provider_options) { auto num_entries = provider_options.size(); std::vector keys, values; if (num_entries > 0) { keys.reserve(num_entries); values.reserve(num_entries); for (const auto& entry : provider_options) { keys.push_back(entry.first.c_str()); values.push_back(entry.second.c_str()); } } ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_OpenVINO_V2(this->p_, keys.data(), values.data(), num_entries)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::AppendExecutionProvider_VitisAI(const std::unordered_map& provider_options) { auto num_entries = provider_options.size(); std::vector keys, values; if (num_entries > 0) { keys.reserve(num_entries); values.reserve(num_entries); for (const auto& entry : provider_options) { keys.push_back(entry.first.c_str()); values.push_back(entry.second.c_str()); } } ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_VitisAI(this->p_, keys.data(), values.data(), num_entries)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::RegisterCustomOpsLibrary(const ORTCHAR_T* library_name, const CustomOpConfigs& custom_op_configs) { // Add custom op config entries before registering the custom op library. Otherwise, the config entries _may_ be ignored by // the custom op library. for (const auto& config_iter : custom_op_configs.GetFlattenedConfigs()) { AddConfigEntry(config_iter.first.c_str(), config_iter.second.c_str()); } ThrowOnError(GetApi().RegisterCustomOpsLibrary_V2(this->p_, library_name)); return *this; } template inline SessionOptionsImpl& SessionOptionsImpl::RegisterCustomOpsUsingFunction(const char* registration_function_name) { ThrowOnError(GetApi().RegisterCustomOpsUsingFunction(this->p_, registration_function_name)); return *this; } /// Session template inline size_t ConstSessionImpl::GetInputCount() const { size_t out; ThrowOnError(GetApi().SessionGetInputCount(this->p_, &out)); return out; } template inline size_t ConstSessionImpl::GetOutputCount() const { size_t out; ThrowOnError(GetApi().SessionGetOutputCount(this->p_, &out)); return out; } template inline size_t ConstSessionImpl::GetOverridableInitializerCount() const { size_t out; ThrowOnError(GetApi().SessionGetOverridableInitializerCount(this->p_, &out)); return out; } template inline AllocatedStringPtr ConstSessionImpl::GetInputNameAllocated(size_t index, OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().SessionGetInputName(this->p_, index, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } template inline AllocatedStringPtr ConstSessionImpl::GetOutputNameAllocated(size_t index, OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().SessionGetOutputName(this->p_, index, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } template inline AllocatedStringPtr ConstSessionImpl::GetOverridableInitializerNameAllocated(size_t index, OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().SessionGetOverridableInitializerName(this->p_, index, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } template inline uint64_t ConstSessionImpl::GetProfilingStartTimeNs() const { uint64_t out; ThrowOnError(GetApi().SessionGetProfilingStartTimeNs(this->p_, &out)); return out; } template inline ModelMetadata ConstSessionImpl::GetModelMetadata() const { OrtModelMetadata* out; ThrowOnError(GetApi().SessionGetModelMetadata(this->p_, &out)); return ModelMetadata{out}; } template inline TypeInfo ConstSessionImpl::GetInputTypeInfo(size_t index) const { OrtTypeInfo* out; ThrowOnError(GetApi().SessionGetInputTypeInfo(this->p_, index, &out)); return TypeInfo{out}; } template inline TypeInfo ConstSessionImpl::GetOutputTypeInfo(size_t index) const { OrtTypeInfo* out; ThrowOnError(GetApi().SessionGetOutputTypeInfo(this->p_, index, &out)); return TypeInfo{out}; } template inline TypeInfo ConstSessionImpl::GetOverridableInitializerTypeInfo(size_t index) const { OrtTypeInfo* out; ThrowOnError(GetApi().SessionGetOverridableInitializerTypeInfo(this->p_, index, &out)); return TypeInfo{out}; } template inline std::vector SessionImpl::Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, const char* const* output_names, size_t output_count) { std::vector output_values; output_values.reserve(output_count); for (size_t i = 0; i < output_count; i++) output_values.emplace_back(nullptr); Run(run_options, input_names, input_values, input_count, output_names, output_values.data(), output_count); return output_values; } template inline void SessionImpl::Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, const char* const* output_names, Value* output_values, size_t output_count) { static_assert(sizeof(Value) == sizeof(OrtValue*), "Value is really just an array of OrtValue* in memory, so we can reinterpret_cast safely"); auto ort_input_values = reinterpret_cast(input_values); auto ort_output_values = reinterpret_cast(output_values); ThrowOnError(GetApi().Run(this->p_, run_options, input_names, ort_input_values, input_count, output_names, output_count, ort_output_values)); } template inline void SessionImpl::Run(const RunOptions& run_options, const IoBinding& io_binding) { ThrowOnError(GetApi().RunWithBinding(this->p_, run_options, io_binding)); } template inline void SessionImpl::RunAsync(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, const char* const* output_names, Value* output_values, size_t output_count, RunAsyncCallbackFn callback, void* user_data) { auto ort_input_values = reinterpret_cast(input_values); auto ort_output_values = reinterpret_cast(output_values); ThrowOnError(GetApi().RunAsync(this->p_, run_options, input_names, ort_input_values, input_count, output_names, output_count, ort_output_values, callback, user_data)); } template inline AllocatedStringPtr SessionImpl::EndProfilingAllocated(OrtAllocator* allocator) { char* out = nullptr; ThrowOnError(GetApi().SessionEndProfiling(this->p_, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } } // namespace detail inline SessionOptions::SessionOptions() { ThrowOnError(GetApi().CreateSessionOptions(&this->p_)); } /// CustomOpConfigs inline std::string detail::MakeCustomOpConfigEntryKey(const char* custom_op_name, const char* config) { std::string config_key = "custom_op."; config_key += custom_op_name; config_key += "."; config_key += config; return config_key; } inline CustomOpConfigs& CustomOpConfigs::AddConfig(const char* custom_op_name, const char* config_key, const char* config_value) { const std::string full_flat_key = detail::MakeCustomOpConfigEntryKey(custom_op_name, config_key); flat_configs_[full_flat_key] = config_value; return *this; } inline const std::unordered_map& CustomOpConfigs::GetFlattenedConfigs() const { return flat_configs_; } inline Session::Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options) { ThrowOnError(GetApi().CreateSession(env, model_path, options, &this->p_)); } inline Session::Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options, OrtPrepackedWeightsContainer* prepacked_weights_container) { ThrowOnError(GetApi().CreateSessionWithPrepackedWeightsContainer(env, model_path, options, prepacked_weights_container, &this->p_)); } inline Session::Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options) { ThrowOnError(GetApi().CreateSessionFromArray(env, model_data, model_data_length, options, &this->p_)); } inline Session::Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options, OrtPrepackedWeightsContainer* prepacked_weights_container) { ThrowOnError(GetApi().CreateSessionFromArrayWithPrepackedWeightsContainer(env, model_data, model_data_length, options, prepacked_weights_container, &this->p_)); } inline AllocatedStringPtr ModelMetadata::GetProducerNameAllocated(OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().ModelMetadataGetProducerName(p_, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } inline AllocatedStringPtr ModelMetadata::GetGraphNameAllocated(OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().ModelMetadataGetGraphName(p_, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } inline AllocatedStringPtr ModelMetadata::GetDomainAllocated(OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().ModelMetadataGetDomain(p_, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } inline AllocatedStringPtr Ort::ModelMetadata::GetDescriptionAllocated(OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().ModelMetadataGetDescription(p_, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } inline AllocatedStringPtr ModelMetadata::GetGraphDescriptionAllocated(OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().ModelMetadataGetGraphDescription(p_, allocator, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } inline AllocatedStringPtr ModelMetadata::LookupCustomMetadataMapAllocated(const char* key, OrtAllocator* allocator) const { char* out; ThrowOnError(GetApi().ModelMetadataLookupCustomMetadataMap(p_, allocator, key, &out)); return AllocatedStringPtr(out, detail::AllocatedFree(allocator)); } inline std::vector ModelMetadata::GetCustomMetadataMapKeysAllocated(OrtAllocator* allocator) const { auto deletor = detail::AllocatedFree(allocator); std::vector result; char** out = nullptr; int64_t num_keys = 0; ThrowOnError(GetApi().ModelMetadataGetCustomMetadataMapKeys(p_, allocator, &out, &num_keys)); if (num_keys <= 0) { return result; } // array of pointers will be freed std::unique_ptr array_guard(out, deletor); // reserve may throw auto strings_deletor = [&deletor, num_keys](char** out) { for(int64_t i = 0; i < num_keys; ++i) deletor(out[i]); }; std::unique_ptr strings_guard(out, strings_deletor); result.reserve(static_cast(num_keys)); strings_guard.release(); for (int64_t i = 0; i < num_keys; ++i) { result.push_back(AllocatedStringPtr(out[i], deletor)); } return result; } inline int64_t ModelMetadata::GetVersion() const { int64_t out; ThrowOnError(GetApi().ModelMetadataGetVersion(p_, &out)); return out; } namespace detail { template inline ONNXTensorElementDataType TensorTypeAndShapeInfoImpl::GetElementType() const { ONNXTensorElementDataType out; ThrowOnError(GetApi().GetTensorElementType(this->p_, &out)); return out; } template inline size_t TensorTypeAndShapeInfoImpl::GetElementCount() const { size_t out; ThrowOnError(GetApi().GetTensorShapeElementCount(this->p_, &out)); return static_cast(out); } template inline size_t TensorTypeAndShapeInfoImpl::GetDimensionsCount() const { size_t out; ThrowOnError(GetApi().GetDimensionsCount(this->p_, &out)); return out; } template inline void TensorTypeAndShapeInfoImpl::GetDimensions(int64_t* values, size_t values_count) const { ThrowOnError(GetApi().GetDimensions(this->p_, values, values_count)); } template inline void TensorTypeAndShapeInfoImpl::GetSymbolicDimensions(const char** values, size_t values_count) const { ThrowOnError(GetApi().GetSymbolicDimensions(this->p_, values, values_count)); } template inline std::vector TensorTypeAndShapeInfoImpl::GetShape() const { std::vector out(GetDimensionsCount(), 0); ThrowOnError(GetApi().GetDimensions(this->p_, out.data(), out.size())); return out; } template inline ConstTensorTypeAndShapeInfo TypeInfoImpl::GetTensorTypeAndShapeInfo() const { const OrtTensorTypeAndShapeInfo* out; ThrowOnError(GetApi().CastTypeInfoToTensorInfo(this->p_, &out)); return ConstTensorTypeAndShapeInfo{out}; } template inline ConstSequenceTypeInfo TypeInfoImpl::GetSequenceTypeInfo() const { const OrtSequenceTypeInfo* out; ThrowOnError(GetApi().CastTypeInfoToSequenceTypeInfo(this->p_, &out)); return ConstSequenceTypeInfo{out}; } template inline ConstMapTypeInfo TypeInfoImpl::GetMapTypeInfo() const { const OrtMapTypeInfo* out; ThrowOnError(GetApi().CastTypeInfoToMapTypeInfo(this->p_, &out)); return ConstMapTypeInfo{out}; } template inline ONNXType TypeInfoImpl::GetONNXType() const { ONNXType out; ThrowOnError(GetApi().GetOnnxTypeFromTypeInfo(this->p_, &out)); return out; } template inline TypeInfo SequenceTypeInfoImpl::GetSequenceElementType() const { OrtTypeInfo* output; ThrowOnError(GetApi().GetSequenceElementType(this->p_, &output)); return TypeInfo{output}; } template inline TypeInfo OptionalTypeInfoImpl::GetOptionalElementType() const { OrtTypeInfo* info; ThrowOnError(GetApi().GetOptionalContainedTypeInfo(this->p_, &info)); return TypeInfo{info}; } template inline ONNXTensorElementDataType MapTypeInfoImpl::GetMapKeyType() const { ONNXTensorElementDataType out; ThrowOnError(GetApi().GetMapKeyType(this->p_, &out)); return out; } template inline TypeInfo MapTypeInfoImpl::GetMapValueType() const { OrtTypeInfo* output; ThrowOnError(GetApi().GetMapValueType(this->p_, &output)); return TypeInfo{output}; } template inline ConstOptionalTypeInfo TypeInfoImpl::GetOptionalTypeInfo() const { const OrtOptionalTypeInfo* info; ThrowOnError(GetApi().CastTypeInfoToOptionalTypeInfo(this->p_, &info)); return ConstOptionalTypeInfo{info}; } } // namespace detail namespace detail { template template inline void ConstValueImpl::GetOpaqueData(const char* domain, const char* type_name, R& out) const { ThrowOnError(GetApi().GetOpaqueValue(domain, type_name, this->p_, &out, sizeof(R))); } template inline bool ConstValueImpl::IsTensor() const { int out; ThrowOnError(GetApi().IsTensor(this->p_, &out)); return out != 0; } template inline bool ConstValueImpl::HasValue() const { int out; ThrowOnError(GetApi().HasValue(this->p_, &out)); return out != 0; } template inline size_t ConstValueImpl::GetCount() const { size_t out; ThrowOnError(GetApi().GetValueCount(this->p_, &out)); return out; } template inline Value ConstValueImpl::GetValue(int index, OrtAllocator* allocator) const { OrtValue* out; ThrowOnError(GetApi().GetValue(this->p_, index, allocator, &out)); return Value{out}; } template inline size_t ConstValueImpl::GetStringTensorDataLength() const { size_t out; ThrowOnError(GetApi().GetStringTensorDataLength(this->p_, &out)); return out; } template inline size_t ConstValueImpl::GetStringTensorElementLength(size_t element_index) const { size_t out; ThrowOnError(GetApi().GetStringTensorElementLength(this->p_, element_index, &out)); return out; } template template inline const R* ConstValueImpl::GetTensorData() const { R* out; ThrowOnError(GetApi().GetTensorMutableData(const_cast(this->p_), (void**)&out)); return out; } template inline const void* ConstValueImpl::GetTensorRawData() const { void* out; ThrowOnError(GetApi().GetTensorMutableData(const_cast(this->p_), &out)); return out; } template inline TypeInfo ConstValueImpl::GetTypeInfo() const { OrtTypeInfo* output; ThrowOnError(GetApi().GetTypeInfo(this->p_, &output)); return TypeInfo{output}; } template inline TensorTypeAndShapeInfo ConstValueImpl::GetTensorTypeAndShapeInfo() const { OrtTensorTypeAndShapeInfo* output; ThrowOnError(GetApi().GetTensorTypeAndShape(this->p_, &output)); return TensorTypeAndShapeInfo{output}; } template inline ConstMemoryInfo ConstValueImpl::GetTensorMemoryInfo() const { const OrtMemoryInfo* mem_info; ThrowOnError(GetApi().GetTensorMemoryInfo(this->p_, &mem_info)); return ConstMemoryInfo(mem_info); } template inline void ConstValueImpl::GetStringTensorElement(size_t buffer_length, size_t element_index, void* buffer) const { ThrowOnError(GetApi().GetStringTensorElement(this->p_, buffer_length, element_index, buffer)); } template inline std::string ConstValueImpl::GetStringTensorElement(size_t element_index) const { size_t buffer_length; ThrowOnError(GetApi().GetStringTensorElementLength(this->p_, element_index, &buffer_length)); std::string s; s.resize(buffer_length); ThrowOnError(GetApi().GetStringTensorElement(this->p_, buffer_length, element_index, &s[0])); return s; } template inline void ConstValueImpl::GetStringTensorContent(void* buffer, size_t buffer_length, size_t* offsets, size_t offsets_count) const { ThrowOnError(GetApi().GetStringTensorContent(this->p_, buffer, buffer_length, offsets, offsets_count)); } #if !defined(DISABLE_SPARSE_TENSORS) template inline OrtSparseFormat ConstValueImpl::GetSparseFormat() const { OrtSparseFormat format; ThrowOnError(GetApi().GetSparseTensorFormat(this->p_, &format)); return format; } template inline TensorTypeAndShapeInfo ConstValueImpl::GetSparseTensorValuesTypeAndShapeInfo() const { OrtTensorTypeAndShapeInfo* output; ThrowOnError(GetApi().GetSparseTensorValuesTypeAndShape(this->p_, &output)); return TensorTypeAndShapeInfo{output}; } template inline TensorTypeAndShapeInfo ConstValueImpl::GetSparseTensorIndicesTypeShapeInfo(OrtSparseIndicesFormat indices_format) const { OrtTensorTypeAndShapeInfo* output; ThrowOnError(GetApi().GetSparseTensorIndicesTypeShape(this->p_, indices_format, &output)); return TensorTypeAndShapeInfo{output}; } template template inline const R* ConstValueImpl::GetSparseTensorIndicesData(OrtSparseIndicesFormat indices_format, size_t& num_indices) const { const void* out; ThrowOnError(GetApi().GetSparseTensorIndices(this->p_, indices_format, &num_indices, &out)); return reinterpret_cast(out); } template inline bool ConstValueImpl::IsSparseTensor() const { int out; ThrowOnError(GetApi().IsSparseTensor(this->p_, &out)); return out != 0; } template template inline const R* ConstValueImpl::GetSparseTensorValues() const { const void* out; ThrowOnError(GetApi().GetSparseTensorValues(this->p_, &out)); return reinterpret_cast(out); } #endif template void ValueImpl::FillStringTensor(const char* const* s, size_t s_len) { ThrowOnError(GetApi().FillStringTensor(this->p_, s, s_len)); } template void ValueImpl::FillStringTensorElement(const char* s, size_t index) { ThrowOnError(GetApi().FillStringTensorElement(this->p_, s, index)); } template inline char* ValueImpl::GetResizedStringTensorElementBuffer(size_t index, size_t buffer_length) { char* result; ThrowOnError(GetApi().GetResizedStringTensorElementBuffer(this->p_, index, buffer_length, &result)); return result; } template void* ValueImpl::GetTensorMutableRawData() { void* out; ThrowOnError(GetApi().GetTensorMutableData(this->p_, &out)); return out; } template template R* ValueImpl::GetTensorMutableData() { R* out; ThrowOnError(GetApi().GetTensorMutableData(this->p_, (void**)&out)); return out; } template template R& ValueImpl::At(const std::vector& location) { static_assert(!std::is_same::value, "this api does not support std::string"); R* out; ThrowOnError(GetApi().TensorAt(this->p_, location.data(), location.size(), (void**)&out)); return *out; } #if !defined(DISABLE_SPARSE_TENSORS) template void ValueImpl::UseCooIndices(int64_t* indices_data, size_t indices_num) { ThrowOnError(GetApi().UseCooIndices(this->p_, indices_data, indices_num)); } template void ValueImpl::UseCsrIndices(int64_t* inner_data, size_t inner_num, int64_t* outer_data, size_t outer_num) { ThrowOnError(GetApi().UseCsrIndices(this->p_, inner_data, inner_num, outer_data, outer_num)); } template void ValueImpl::UseBlockSparseIndices(const Shape& indices_shape, int32_t* indices_data) { ThrowOnError(GetApi().UseBlockSparseIndices(this->p_, indices_shape.shape, indices_shape.shape_len, indices_data)); } template void ValueImpl::FillSparseTensorCoo(const OrtMemoryInfo* mem_info, const OrtSparseValuesParam& values_param, const int64_t* indices_data, size_t indices_num) { ThrowOnError(GetApi().FillSparseTensorCoo(this->p_, mem_info, values_param.values_shape, values_param.values_shape_len, values_param.data.p_data, indices_data, indices_num)); } template void ValueImpl::FillSparseTensorCsr(const OrtMemoryInfo* data_mem_info, const OrtSparseValuesParam& values, const int64_t* inner_indices_data, size_t inner_indices_num, const int64_t* outer_indices_data, size_t outer_indices_num) { ThrowOnError(GetApi().FillSparseTensorCsr(this->p_, data_mem_info, values.values_shape, values.values_shape_len, values.data.p_data, inner_indices_data, inner_indices_num, outer_indices_data, outer_indices_num)); } template void ValueImpl::FillSparseTensorBlockSparse(const OrtMemoryInfo* data_mem_info, const OrtSparseValuesParam& values, const Shape& indices_shape, const int32_t* indices_data) { ThrowOnError(GetApi().FillSparseTensorBlockSparse(this->p_, data_mem_info, values.values_shape, values.values_shape_len, values.data.p_data, indices_shape.shape, indices_shape.shape_len, indices_data)); } #endif // !defined(DISABLE_SPARSE_TENSORS) } // namespace detail template inline Value Value::CreateTensor(const OrtMemoryInfo* info, T* p_data, size_t p_data_element_count, const int64_t* shape, size_t shape_len) { return CreateTensor(info, p_data, p_data_element_count * sizeof(T), shape, shape_len, TypeToTensorType::type); } inline Value Value::CreateTensor(const OrtMemoryInfo* info, void* p_data, size_t p_data_byte_count, const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type) { OrtValue* out; ThrowOnError(GetApi().CreateTensorWithDataAsOrtValue(info, p_data, p_data_byte_count, shape, shape_len, type, &out)); return Value{out}; } template inline Value Value::CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len) { return CreateTensor(allocator, shape, shape_len, TypeToTensorType::type); } inline Value Value::CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type) { OrtValue* out; ThrowOnError(GetApi().CreateTensorAsOrtValue(allocator, shape, shape_len, type, &out)); return Value{out}; } #if !defined(DISABLE_SPARSE_TENSORS) template inline Value Value::CreateSparseTensor(const OrtMemoryInfo* info, T* p_data, const Shape& dense_shape, const Shape& values_shape) { return CreateSparseTensor(info, p_data, dense_shape, values_shape, TypeToTensorType::type); } inline Value Value::CreateSparseTensor(const OrtMemoryInfo* info, void* p_data, const Shape& dense_shape, const Shape& values_shape, ONNXTensorElementDataType type) { OrtValue* out; ThrowOnError(GetApi().CreateSparseTensorWithValuesAsOrtValue(info, p_data, dense_shape.shape, dense_shape.shape_len, values_shape.shape, values_shape.shape_len, type, &out)); return Value{out}; } template inline Value Value::CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape) { return CreateSparseTensor(allocator, dense_shape, TypeToTensorType::type); } inline Value Value::CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape, ONNXTensorElementDataType type) { OrtValue* out; ThrowOnError(GetApi().CreateSparseTensorAsOrtValue(allocator, dense_shape.shape, dense_shape.shape_len, type, &out)); return Value{out}; } #endif // !defined(DISABLE_SPARSE_TENSORS) inline Value Value::CreateMap(const Value& keys, const Value& values) { OrtValue* out; const OrtValue* inputs[2] = {keys, values}; ThrowOnError(GetApi().CreateValue(inputs, 2, ONNX_TYPE_MAP, &out)); return Value{out}; } inline Value Value::CreateSequence(const std::vector& values) { OrtValue* out; std::vector values_ort{values.data(), values.data() + values.size()}; ThrowOnError(GetApi().CreateValue(values_ort.data(), values_ort.size(), ONNX_TYPE_SEQUENCE, &out)); return Value{out}; } template inline Value Value::CreateOpaque(const char* domain, const char* type_name, const T& data_container) { OrtValue* out; ThrowOnError(GetApi().CreateOpaqueValue(domain, type_name, &data_container, sizeof(T), &out)); return Value{out}; } // // Custom OP Inlines // inline Logger::Logger(const OrtLogger* logger) : logger_(logger) { Ort::ThrowOnError(GetApi().Logger_GetLoggingSeverityLevel(this->logger_, &this->cached_severity_level_)); } inline OrtLoggingLevel Logger::GetLoggingSeverityLevel() const noexcept { return cached_severity_level_; } inline Status Logger::LogMessage(OrtLoggingLevel log_severity_level, const ORTCHAR_T* file_path, int line_number, const char* func_name, const char* message) const noexcept { OrtStatus* status = GetApi().Logger_LogMessage(logger_, log_severity_level, message, file_path, line_number, func_name); return Status{status}; } // Disable warnings about the format string not being a literal (-Wformat-nonliteral and -Wformat-security) // for gcc and clang. The alternative is to use actual C-style variadic parameters and apply // __attribute__(format(printf...)), which does not work with variadic templates. #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wformat-nonliteral" #pragma GCC diagnostic ignored "-Wformat-security" #elif defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wformat-nonliteral" #pragma clang diagnostic ignored "-Wformat-security" #endif template inline Status Logger::LogFormattedMessage(OrtLoggingLevel log_severity_level, const ORTCHAR_T* file_path, int line_number, const char* func_name, const char* format, Args&&... args) const noexcept { int msg_len = std::snprintf(nullptr, 0U, format, std::forward(args)...); if (msg_len < 0) { // Formatting error return Status("Failed to log message due to formatting error", OrtErrorCode::ORT_FAIL); } OrtStatus* status = nullptr; const size_t buffer_size = static_cast(msg_len) + 1U; constexpr size_t kStackBufferSize = 1024; if (buffer_size < kStackBufferSize) { char buffer[kStackBufferSize]; snprintf(buffer, kStackBufferSize, format, std::forward(args)...); status = GetApi().Logger_LogMessage(logger_, log_severity_level, buffer, file_path, line_number, func_name); } else { // std::make_unique is only supported starting at C++14. #if (__cplusplus >= 201402L) || (_MSC_VER >= 1900) auto buffer = std::make_unique(buffer_size); #else std::unique_ptr buffer(new char[buffer_size]); #endif std::snprintf(buffer.get(), buffer_size, format, std::forward(args)...); status = GetApi().Logger_LogMessage(logger_, log_severity_level, buffer.get(), file_path, line_number, func_name); } return Status{status}; } // Re-enable -Wformat-nonliteral and -Wformat-security #if defined(__GNUC__) #pragma GCC diagnostic pop #elif defined(__clang__) #pragma clang diagnostic pop #endif inline KernelContext::KernelContext(OrtKernelContext* context) : ctx_(context) { } inline size_t KernelContext::GetInputCount() const { size_t out = 0; Ort::ThrowOnError(GetApi().KernelContext_GetInputCount(ctx_, &out)); return out; } inline size_t KernelContext::GetOutputCount() const { size_t out = 0; Ort::ThrowOnError(GetApi().KernelContext_GetOutputCount(ctx_, &out)); return out; } inline ConstValue KernelContext::GetInput(size_t index) const { const OrtValue* out = nullptr; Ort::ThrowOnError(GetApi().KernelContext_GetInput(ctx_, index, &out)); return ConstValue{out}; } inline UnownedValue KernelContext::GetOutput(size_t index, const int64_t* dim_values, size_t dim_count) const { OrtValue* out = nullptr; Ort::ThrowOnError(GetApi().KernelContext_GetOutput(ctx_, index, dim_values, dim_count, &out)); return UnownedValue(out); } inline UnownedValue KernelContext::GetOutput(size_t index, const std::vector& dims) const { OrtValue* out = nullptr; Ort::ThrowOnError(GetApi().KernelContext_GetOutput(ctx_, index, dims.data(), dims.size(), &out)); return UnownedValue(out); } inline void* KernelContext::GetGPUComputeStream() const { void* out = nullptr; Ort::ThrowOnError(GetApi().KernelContext_GetGPUComputeStream(ctx_, &out)); return out; } inline OrtAllocator* KernelContext::GetAllocator(const OrtMemoryInfo& memory_info) const { OrtAllocator* out = nullptr; Ort::ThrowOnError(GetApi().KernelContext_GetAllocator(ctx_, &memory_info, &out)); return out; } inline Logger KernelContext::GetLogger() const { const OrtLogger* out = nullptr; ThrowOnError(GetApi().KernelContext_GetLogger(this->ctx_, &out)); return Logger{out}; } inline void KernelContext::ParallelFor(void (*fn)(void*, size_t), size_t total, size_t num_batch, void* usr_data) const { ThrowOnError(GetApi().KernelContext_ParallelFor(ctx_, fn, total, num_batch, usr_data)); } inline OpAttr::OpAttr(const char* name, const void* data, int len, OrtOpAttrType type) { Ort::ThrowOnError(GetApi().CreateOpAttr(name, data, len, type, &p_)); } namespace detail { template inline KernelInfo KernelInfoImpl::Copy() const { OrtKernelInfo* info_copy = nullptr; Ort::ThrowOnError(GetApi().CopyKernelInfo(this->p_, &info_copy)); return KernelInfo{info_copy}; } template inline size_t KernelInfoImpl::GetInputCount() const { size_t out = 0; ThrowOnError(GetApi().KernelInfo_GetInputCount(this->p_, &out)); return out; } template inline size_t KernelInfoImpl::GetOutputCount() const { size_t out = 0; ThrowOnError(GetApi().KernelInfo_GetOutputCount(this->p_, &out)); return out; } template inline std::string KernelInfoImpl::GetInputName(size_t index) const { size_t size = 0; // Feed nullptr for the data buffer to query the true size of the string value Ort::ThrowOnError(GetApi().KernelInfo_GetInputName(this->p_, index, nullptr, &size)); std::string out; out.resize(size); Ort::ThrowOnError(GetApi().KernelInfo_GetInputName(this->p_, index, &out[0], &size)); out.resize(size - 1); // remove the terminating character '\0' return out; } template inline std::string KernelInfoImpl::GetOutputName(size_t index) const { size_t size = 0; // Feed nullptr for the data buffer to query the true size of the string value Ort::ThrowOnError(GetApi().KernelInfo_GetOutputName(this->p_, index, nullptr, &size)); std::string out; out.resize(size); Ort::ThrowOnError(GetApi().KernelInfo_GetOutputName(this->p_, index, &out[0], &size)); out.resize(size - 1); // remove the terminating character '\0' return out; } template inline TypeInfo KernelInfoImpl::GetInputTypeInfo(size_t index) const { OrtTypeInfo* out = nullptr; ThrowOnError(GetApi().KernelInfo_GetInputTypeInfo(this->p_, index, &out)); return TypeInfo{out}; } template inline TypeInfo KernelInfoImpl::GetOutputTypeInfo(size_t index) const { OrtTypeInfo* out = nullptr; ThrowOnError(GetApi().KernelInfo_GetOutputTypeInfo(this->p_, index, &out)); return TypeInfo{out}; } template inline Value KernelInfoImpl::GetTensorAttribute(const char* name, OrtAllocator* allocator) const { OrtValue* out = nullptr; ThrowOnError(GetApi().KernelInfoGetAttribute_tensor(this->p_, name, allocator, &out)); return Value{out}; } template inline ConstValue KernelInfoImpl::GetTensorConstantInput(size_t index, int* is_constant) const { const OrtValue* out = nullptr; ThrowOnError(GetApi().KernelInfoGetConstantInput_tensor(this->p_, index, is_constant, &out)); return ConstValue{out}; } template inline std::string KernelInfoImpl::GetNodeName() const { size_t size = 0; // Feed nullptr for the data buffer to query the true size of the string value Ort::ThrowOnError(GetApi().KernelInfo_GetNodeName(this->p_, nullptr, &size)); std::string out; out.resize(size); Ort::ThrowOnError(GetApi().KernelInfo_GetNodeName(this->p_, &out[0], &size)); out.resize(size - 1); // remove the terminating character '\0' return out; } template inline Logger KernelInfoImpl::GetLogger() const { const OrtLogger* out = nullptr; ThrowOnError(GetApi().KernelInfo_GetLogger(this->p_, &out)); return Logger{out}; } inline void attr_utils::GetAttr(const OrtKernelInfo* p, const char* name, float& out) { Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_float(p, name, &out)); } inline void attr_utils::GetAttr(const OrtKernelInfo* p, const char* name, int64_t& out) { Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_int64(p, name, &out)); } inline void attr_utils::GetAttr(const OrtKernelInfo* p, const char* name, std::string& result) { size_t size = 0; // Feed nullptr for the data buffer to query the true size of the string attribute Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_string(p, name, nullptr, &size)); std::string out; out.resize(size); Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_string(p, name, &out[0], &size)); out.resize(size - 1); // remove the terminating character '\0' out.swap(result); } inline void attr_utils::GetAttrs(const OrtKernelInfo* p, const char* name, std::vector& result) { size_t size = 0; // Feed nullptr for the data buffer to query the true size of the attribute Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_float(p, name, nullptr, &size)); std::vector out; out.resize(size); Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_float(p, name, out.data(), &size)); out.swap(result); } inline void attr_utils::GetAttrs(const OrtKernelInfo* p, const char* name, std::vector& result) { size_t size = 0; // Feed nullptr for the data buffer to query the true size of the attribute Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_int64(p, name, nullptr, &size)); std::vector out; out.resize(size); Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_int64(p, name, out.data(), &size)); out.swap(result); } } // namespace detail inline KernelInfo::KernelInfo(OrtKernelInfo* info) : detail::KernelInfoImpl{info} {} inline Op::Op(OrtOp* p) : Base(p) {} inline Op Op::Create(const OrtKernelInfo* info, const char* op_name, const char* domain, int version, const char** type_constraint_names, const ONNXTensorElementDataType* type_constraint_values, size_t type_constraint_count, const OpAttr* attr_values, size_t attr_count, size_t input_count, size_t output_count) { static_assert(sizeof(OpAttr) == sizeof(OrtOpAttr*), "OpAttr's is expected to be just an array of OrtOpAttr in memory so we can reinterpret safely"); auto attr_input_values = reinterpret_cast(attr_values); OrtOp* op; Ort::ThrowOnError(GetApi().CreateOp(info, op_name, domain, version, type_constraint_names, type_constraint_values, static_cast(type_constraint_count), attr_input_values, static_cast(attr_count), static_cast(input_count), static_cast(output_count), &op)); return Op{op}; } inline void Op::Invoke(const OrtKernelContext* context, const Value* input_values, size_t input_count, Value* output_values, size_t output_count) { static_assert(sizeof(Value) == sizeof(OrtValue*), "Value is really just an array of OrtValue* in memory, so we can reinterpret_cast safely"); auto ort_input_values = reinterpret_cast(input_values); auto ort_output_values = reinterpret_cast(output_values); Ort::ThrowOnError(GetApi().InvokeOp(context, p_, ort_input_values, static_cast(input_count), ort_output_values, static_cast(output_count))); } inline void Op::Invoke(const OrtKernelContext* context, const OrtValue* const* input_values, size_t input_count, OrtValue* const* output_values, size_t output_count) { Ort::ThrowOnError(GetApi().InvokeOp(context, p_, input_values, static_cast(input_count), output_values, static_cast(output_count))); } inline std::string GetVersionString() { return OrtGetApiBase()->GetVersionString(); } inline std::string GetBuildInfoString() { return GetApi().GetBuildInfoString(); } inline std::vector GetAvailableProviders() { char** providers; int len; auto release_fn = [&len](char** providers) { // This should always return nullptr. ThrowOnError(GetApi().ReleaseAvailableProviders(providers, len)); }; ThrowOnError(GetApi().GetAvailableProviders(&providers, &len)); std::unique_ptr guard(providers, release_fn); std::vector available_providers; available_providers.reserve(static_cast(len)); for (int i = 0; i < len; ++i) { available_providers.emplace_back(providers[i]); } return available_providers; } template void CustomOpBase::GetSessionConfigs(std::unordered_map& out, ConstSessionOptions options) const { const TOp* derived = static_cast(this); std::vector keys = derived->GetSessionConfigKeys(); out.reserve(keys.size()); std::string config_entry_key = detail::MakeCustomOpConfigEntryKey(derived->GetName(), ""); const size_t prefix_size = config_entry_key.length(); for (const auto& key : keys) { config_entry_key.resize(prefix_size); config_entry_key.append(key); out[key] = options.GetConfigEntryOrDefault(config_entry_key.c_str(), ""); } } inline ShapeInferContext::ShapeInferContext(const OrtApi* ort_api, OrtShapeInferContext* ctx) : ort_api_(ort_api), ctx_(ctx) { size_t input_count = 0; Ort::ThrowOnError(ort_api_->ShapeInferContext_GetInputCount(ctx_, &input_count)); for (size_t ith_input = 0; ith_input < input_count; ++ith_input) { OrtTensorTypeAndShapeInfo* info{}; Ort::ThrowOnError(ort_api_->ShapeInferContext_GetInputTypeShape(ctx, ith_input, &info)); TensorTypeAndShapeInfo type_shape_info(info); auto integer_shape = type_shape_info.GetShape(); std::vector symbolic_shape(integer_shape.size(), {}); type_shape_info.GetSymbolicDimensions(&symbolic_shape[0], integer_shape.size()); Shape shape; for (size_t ith = 0; ith < integer_shape.size(); ++ith) { if (symbolic_shape[ith] && std::string{symbolic_shape[ith]}.size() > 0) { shape.emplace_back(symbolic_shape[ith]); } else { shape.emplace_back(integer_shape[ith]); } } input_shapes_.push_back(std::move(shape)); type_shape_info.release(); } } inline Status ShapeInferContext::SetOutputShape(size_t indice, const Shape& shape) { OrtTensorTypeAndShapeInfo* info = {}; ORT_CXX_RETURN_ON_API_FAIL(ort_api_->CreateTensorTypeAndShapeInfo(&info)); using InfoPtr = std::unique_ptr>; InfoPtr info_ptr(info, [this](OrtTensorTypeAndShapeInfo* obj) { ort_api_->ReleaseTensorTypeAndShapeInfo(obj); }); std::vector integer_dims; std::vector symbolic_dims; for (const auto dim : shape) { if (dim.IsInt()) { integer_dims.push_back(dim.IsInt()); symbolic_dims.push_back(""); } else { if (!dim.AsSym() || std::string{dim.AsSym()}.empty()) { ORT_CXX_API_THROW("Symbolic dim must not be an empty string", ORT_INVALID_ARGUMENT); } integer_dims.push_back(SymbolicInteger::INVALID_INT_DIM); symbolic_dims.push_back(dim.AsSym()); } } ORT_CXX_RETURN_ON_API_FAIL(ort_api_->SetDimensions(info, integer_dims.data(), integer_dims.size())); ORT_CXX_RETURN_ON_API_FAIL(ort_api_->SetSymbolicDimensions(info, symbolic_dims.data(), symbolic_dims.size())); ORT_CXX_RETURN_ON_API_FAIL(ort_api_->ShapeInferContext_SetOutputTypeShape(ctx_, indice, info)); return Status{nullptr}; } inline int64_t ShapeInferContext::GetAttrInt(const char* attr_name) { const auto* attr = GetAttrHdl(attr_name); int64_t i = {}; size_t out = {}; Ort::ThrowOnError(ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_INT, &i, sizeof(i), &out)); return i; } inline ShapeInferContext::Ints ShapeInferContext::GetAttrInts(const char* attr_name) { const auto* attr = GetAttrHdl(attr_name); int64_t i = {}; size_t out = {}; // first call to get the bytes needed auto status = ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_INTS, &i, sizeof(i), &out); if (status) { size_t num_i = out / sizeof(int64_t); ShapeInferContext::Ints ints(num_i, 0); Ort::ThrowOnError(ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_INTS, ints.data(), out, &out)); return ints; } else { return {i}; } } inline float ShapeInferContext::GetAttrFloat(const char* attr_name) { const auto* attr = GetAttrHdl(attr_name); float f = {}; size_t out = {}; Ort::ThrowOnError(ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_FLOAT, &f, sizeof(f), &out)); return f; } inline ShapeInferContext::Floats ShapeInferContext::GetAttrFloats(const char* attr_name) { const auto* attr = GetAttrHdl(attr_name); float f = {}; size_t out = {}; // first call to get the bytes needed auto status = ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_FLOATS, &f, sizeof(f), &out); if (status) { size_t num_f = out / sizeof(float); ShapeInferContext::Floats floats(num_f, 0); Ort::ThrowOnError(ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_FLOATS, floats.data(), out, &out)); return floats; } else { return {f}; } } inline std::string ShapeInferContext::GetAttrString(const char* attr_name) { const auto* attr = GetAttrHdl(attr_name); char c = {}; size_t out = {}; // first call to get the bytes needed auto status = ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_STRING, &c, sizeof(char), &out); if (status) { std::vector chars(out, '\0'); Ort::ThrowOnError(ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_STRING, chars.data(), out, &out)); return {chars.data()}; } else { return {c}; } } inline ShapeInferContext::Strings ShapeInferContext::GetAttrStrings(const char* attr_name) { const auto* attr = GetAttrHdl(attr_name); char c = {}; size_t out = {}; // first call to get the bytes needed auto status = ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_STRINGS, &c, sizeof(char), &out); if (status) { std::vector chars(out, '\0'); Ort::ThrowOnError(ort_api_->ReadOpAttr(attr, ORT_OP_ATTR_STRINGS, chars.data(), out, &out)); ShapeInferContext::Strings strings; char* char_st = chars.data(); char* char_ed = char_st + out; while (char_st < char_ed) { strings.emplace_back(char_st); while (*char_st != '\0') { char_st++; } char_st++; } return strings; } else { return {std::string{c}}; } } inline const OrtOpAttr* ShapeInferContext::GetAttrHdl(const char* attr_name) const { const OrtOpAttr* attr_hdl = {}; Ort::ThrowOnError(ort_api_->ShapeInferContext_GetAttribute(ctx_, attr_name, &attr_hdl)); return attr_hdl; } } // namespace Ort