You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1120 lines
61 KiB

4 months ago
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// Summary
// The header has APIs to save custom op authors the trouble of defining schemas,
// which will be inferred by functions' signature, as long as their argument list has types supported here.
// Input could be:
// 1. Tensor of onnx data types.
// 2. Span of onnx data types.
// 3. Scalar of onnx data types.
// A input could be optional if indicated as std::optional<...>.
// For an output, it must be a tensor of onnx data types.
// Further, the header also has utility for a simple custom struct, where resources could be kept, to be registered as a custom op.
// For concrete examples, please search keyword "LiteCustomOpTest" under "<cloned_src_dir>/onnxruntime/test/".
// Note - all APIs in this header are ABI.
#pragma once
#include "onnxruntime_cxx_api.h"
#include <optional>
#include <numeric>
#include <functional>
#include <unordered_set>
namespace Ort {
namespace Custom {
class ArgBase {
public:
ArgBase(OrtKernelContext* ctx,
size_t indice,
bool is_input) : ctx_(ctx), indice_(indice), is_input_(is_input) {}
virtual ~ArgBase(){};
protected:
struct KernelContext ctx_;
size_t indice_;
bool is_input_;
};
using ArgPtr = std::unique_ptr<Custom::ArgBase>;
using ArgPtrs = std::vector<ArgPtr>;
class TensorBase : public ArgBase {
public:
TensorBase(OrtKernelContext* ctx,
size_t indice,
bool is_input) : ArgBase(ctx, indice, is_input) {}
operator bool() const {
return shape_.has_value();
}
const std::vector<int64_t>& Shape() const {
if (!shape_.has_value()) {
ORT_CXX_API_THROW("tensor shape is not yet initialized", OrtErrorCode::ORT_RUNTIME_EXCEPTION);
}
return shape_.value();
}
ONNXTensorElementDataType Type() const {
return type_;
}
int64_t NumberOfElement() const {
if (shape_.has_value()) {
return std::accumulate(shape_->begin(), shape_->end(), 1LL, std::multiplies<int64_t>());
} else {
return 0;
}
}
std::string Shape2Str() const {
if (shape_.has_value()) {
std::string shape_str;
for (const auto& dim : *shape_) {
shape_str.append(std::to_string(dim));
shape_str.append(", ");
}
return shape_str;
} else {
return "empty";
}
}
bool IsCpuTensor() const {
return strcmp("Cpu", mem_type_) == 0;
}
virtual const void* DataRaw() const = 0;
virtual size_t SizeInBytes() const = 0;
protected:
std::optional<std::vector<int64_t>> shape_;
ONNXTensorElementDataType type_ = ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
const char* mem_type_ = "Cpu";
};
template <typename T>
struct Span {
const T* data_ = {};
size_t size_ = {};
void Assign(const T* data, size_t size) {
data_ = data;
size_ = size;
}
size_t size() const { return size_; }
T operator[](size_t indice) const {
return data_[indice];
}
const T* data() const { return data_; }
};
template <typename T>
class Tensor : public TensorBase {
public:
using TT = typename std::remove_reference<T>::type;
Tensor(OrtKernelContext* ctx, size_t indice, bool is_input) : TensorBase(ctx, indice, is_input) {
if (is_input_) {
if (indice >= ctx_.GetInputCount()) {
ORT_CXX_API_THROW("invalid indice for Ort::Custom::Tensor", OrtErrorCode::ORT_INVALID_ARGUMENT);
}
const_value_ = ctx_.GetInput(indice);
auto type_shape_info = const_value_.GetTensorTypeAndShapeInfo();
shape_ = type_shape_info.GetShape();
}
}
const TT* Data() const {
return reinterpret_cast<const TT*>(const_value_.GetTensorRawData());
}
TT* Allocate(const std::vector<int64_t>& shape) {
shape_ = shape;
if (!data_) {
shape_ = shape;
data_ = ctx_.GetOutput(indice_, shape).template GetTensorMutableData<TT>();
}
return data_;
}
static TT GetT() { return (TT)0; }
const Span<T>& AsSpan() {
if (!shape_.has_value() || shape_->size() != 1) {
ORT_CXX_API_THROW("invalid shape while trying to get a span out of Ort::Custom::Tensor",
OrtErrorCode::ORT_RUNTIME_EXCEPTION);
}
span_.Assign(Data(), static_cast<size_t>((*shape_)[0]));
return span_;
}
const T& AsScalar() {
if (!shape_.has_value() || shape_->size() != 1 || (*shape_)[0] != 1) {
ORT_CXX_API_THROW("invalid shape while trying to get a scalar from Ort::Custom::Tensor",
OrtErrorCode::ORT_RUNTIME_EXCEPTION);
}
return *Data();
}
const void* DataRaw() const override {
return reinterpret_cast<const void*>(Data());
}
size_t SizeInBytes() const override {
return sizeof(TT) * static_cast<size_t>(NumberOfElement());
}
private:
ConstValue const_value_; // for input
TT* data_{}; // for output
Span<T> span_;
};
template <>
class Tensor<std::string> : public TensorBase {
public:
using strings = std::vector<std::string>;
Tensor(OrtKernelContext* ctx, size_t indice, bool is_input) : TensorBase(ctx, indice, is_input) {
if (is_input_) {
if (indice >= ctx_.GetInputCount()) {
ORT_CXX_API_THROW("invalid indice for Ort::Custom::Tensor", OrtErrorCode::ORT_INVALID_ARGUMENT);
}
auto const_value = ctx_.GetInput(indice);
auto type_shape_info = const_value.GetTensorTypeAndShapeInfo();
shape_ = type_shape_info.GetShape();
auto num_chars = const_value.GetStringTensorDataLength();
// note - there will be copy ...
auto num_strings = static_cast<size_t>(NumberOfElement());
if (num_strings) {
std::vector<char> chars(num_chars + 1, '\0');
std::vector<size_t> offsets(num_strings);
const_value.GetStringTensorContent(static_cast<void*>(chars.data()), num_chars, offsets.data(), offsets.size());
auto upper_bound = num_strings - 1;
input_strings_.resize(num_strings);
for (size_t i = upper_bound;; --i) {
if (i < upper_bound) {
chars[offsets[i + 1]] = '\0';
}
input_strings_[i] = chars.data() + offsets[i];
if (0 == i) {
break;
}
}
}
}
}
const strings& Data() const {
return input_strings_;
}
const void* DataRaw() const override {
if (input_strings_.size() != 1) {
ORT_CXX_API_THROW("DataRaw() only applies to string scalar", ORT_RUNTIME_EXCEPTION);
}
return reinterpret_cast<const void*>(input_strings_[0].c_str());
}
size_t SizeInBytes() const override {
if (input_strings_.size() != 1) {
ORT_CXX_API_THROW("SizeInBytes() only applies to string scalar", ORT_RUNTIME_EXCEPTION);
}
return input_strings_[0].size();
}
void SetStringOutput(const strings& ss, const std::vector<int64_t>& dims) {
shape_ = dims;
std::vector<const char*> raw;
for (const auto& s : ss) {
raw.push_back(s.data());
}
auto output = ctx_.GetOutput(indice_, dims.data(), dims.size());
// note - there will be copy ...
output.FillStringTensor(raw.data(), raw.size());
}
const Span<std::string>& AsSpan() {
ORT_CXX_API_THROW("span for TensorT of string not implemented", OrtErrorCode::ORT_RUNTIME_EXCEPTION);
}
const std::string& AsScalar() {
if (input_strings_.size() != 1) {
ORT_CXX_API_THROW("invalid shape while trying to get a scalar string from Ort::Custom::Tensor",
OrtErrorCode::ORT_RUNTIME_EXCEPTION);
}
return input_strings_[0];
}
private:
std::vector<std::string> input_strings_; // for input
};
template <>
class Tensor<std::string_view> : public TensorBase {
public:
using strings = std::vector<std::string>;
using string_views = std::vector<std::string_view>;
Tensor(OrtKernelContext* ctx, size_t indice, bool is_input) : TensorBase(ctx, indice, is_input) {
if (is_input_) {
if (indice >= ctx_.GetInputCount()) {
ORT_CXX_API_THROW("invalid indice for Ort::Custom::Tensor", OrtErrorCode::ORT_INVALID_ARGUMENT);
}
auto const_value = ctx_.GetInput(indice);
auto type_shape_info = const_value.GetTensorTypeAndShapeInfo();
shape_ = type_shape_info.GetShape();
auto num_chars = const_value.GetStringTensorDataLength();
chars_.resize(num_chars + 1, '\0');
auto num_strings = static_cast<size_t>(NumberOfElement());
if (num_strings) {
std::vector<size_t> offsets(num_strings);
const_value.GetStringTensorContent(static_cast<void*>(chars_.data()), num_chars, offsets.data(), offsets.size());
offsets.push_back(num_chars);
for (size_t i = 0; i < num_strings; ++i) {
input_string_views_.emplace_back(chars_.data() + offsets[i], offsets[i + 1] - offsets[i]);
}
}
}
}
const string_views& Data() const {
return input_string_views_;
}
const void* DataRaw() const override {
if (input_string_views_.size() != 1) {
ORT_CXX_API_THROW("DataRaw() only applies to string scalar", ORT_RUNTIME_EXCEPTION);
}
return reinterpret_cast<const void*>(input_string_views_[0].data());
}
size_t SizeInBytes() const override {
if (input_string_views_.size() != 1) {
ORT_CXX_API_THROW("SizeInBytes() only applies to string scalar", ORT_RUNTIME_EXCEPTION);
}
return input_string_views_[0].size();
}
void SetStringOutput(const strings& ss, const std::vector<int64_t>& dims) {
shape_ = dims;
std::vector<const char*> raw;
for (const auto& s : ss) {
raw.push_back(s.data());
}
auto output = ctx_.GetOutput(indice_, dims.data(), dims.size());
// note - there will be copy ...
output.FillStringTensor(raw.data(), raw.size());
}
const Span<std::string_view>& AsSpan() {
ORT_CXX_API_THROW("span for TensorT of string view not implemented", OrtErrorCode::ORT_RUNTIME_EXCEPTION);
}
std::string_view AsScalar() {
if (input_string_views_.size() != 1) {
ORT_CXX_API_THROW("invalid shape while trying to get a scalar string view from Ort::Custom::Tensor",
OrtErrorCode::ORT_RUNTIME_EXCEPTION);
}
return input_string_views_[0];
}
private:
std::vector<char> chars_; // for input
std::vector<std::string_view> input_string_views_; // for input
};
using TensorPtr = std::unique_ptr<Custom::TensorBase>;
using TensorPtrs = std::vector<TensorPtr>;
struct TensorArray : public ArgBase {
TensorArray(OrtKernelContext* ctx,
size_t start_indice,
bool is_input) : ArgBase(ctx,
start_indice,
is_input) {
if (is_input) {
auto input_count = ctx_.GetInputCount();
for (size_t ith_input = start_indice; ith_input < input_count; ++ith_input) {
auto const_value = ctx_.GetInput(start_indice);
auto type_shape_info = const_value.GetTensorTypeAndShapeInfo();
auto type = type_shape_info.GetElementType();
TensorPtr tensor;
switch (type) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL:
tensor = std::make_unique<Custom::Tensor<bool>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT:
tensor = std::make_unique<Custom::Tensor<float>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE:
tensor = std::make_unique<Custom::Tensor<double>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8:
tensor = std::make_unique<Custom::Tensor<uint8_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8:
tensor = std::make_unique<Custom::Tensor<int8_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16:
tensor = std::make_unique<Custom::Tensor<uint16_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16:
tensor = std::make_unique<Custom::Tensor<int16_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32:
tensor = std::make_unique<Custom::Tensor<uint32_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:
tensor = std::make_unique<Custom::Tensor<int32_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64:
tensor = std::make_unique<Custom::Tensor<uint64_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64:
tensor = std::make_unique<Custom::Tensor<int64_t>>(ctx, ith_input, true);
break;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING:
tensor = std::make_unique<Custom::Tensor<std::string>>(ctx, ith_input, true);
break;
default:
ORT_CXX_API_THROW("unknow input type", ORT_RUNTIME_EXCEPTION);
break;
}
tensors_.emplace_back(tensor.release());
} // for
}
}
template <typename T>
T* AllocateOutput(size_t ith_output, const std::vector<int64_t>& shape) {
// ith_output is the indice of output relative to the tensor array
// indice_ + ith_output is the indice relative to context
auto tensor = std::make_unique<Tensor<T>>(ctx_.GetOrtKernelContext(), indice_ + ith_output, false);
auto raw_output = tensor.get()->Allocate(shape);
tensors_.emplace_back(tensor.release());
return raw_output;
}
Tensor<std::string>& AllocateStringTensor(size_t ith_output) {
// ith_output is the indice of output relative to the tensor array
// indice_ + ith_output is the indice relative to context
auto tensor = std::make_unique<Tensor<std::string>>(ctx_.GetOrtKernelContext(), indice_ + ith_output, false);
Tensor<std::string>& output = *tensor;
tensors_.emplace_back(tensor.release());
return output;
}
size_t Size() const {
return tensors_.size();
}
const TensorPtr& operator[](size_t ith_input) const {
// ith_input is the indice of output relative to the tensor array
return tensors_.at(ith_input);
}
private:
TensorPtrs tensors_;
};
using Variadic = TensorArray;
/*
Note:
OrtLiteCustomOp inherits from OrtCustomOp to bridge tween a custom func/struct and ort core.
The lifetime of an OrtLiteCustomOp instance is managed by customer code, not ort, so:
1. DO NOT cast OrtLiteCustomOp to OrtCustomOp and release since there is no virtual destructor in the hierachy.
2. OrtLiteCustomFunc and OrtLiteCustomStruct, as two sub-structs, can be released in form of OrtLiteCustomOp since all members are kept in the OrtLiteCustomOp,
hence memory could still be recycled properly.
Further, OrtCustomOp is a c struct bearing no v-table, so offspring structs are by design to be of zero virtual functions to maintain cast safety.
*/
struct OrtLiteCustomOp : public OrtCustomOp {
using ConstOptionalFloatTensor = std::optional<const Custom::Tensor<float>&>;
using OptionalFloatTensor = std::optional<Custom::Tensor<float>>;
// CreateTuple
template <size_t ith_input, size_t ith_output, typename... Ts>
static typename std::enable_if<sizeof...(Ts) == 0, std::tuple<>>::type
CreateTuple(OrtKernelContext*, ArgPtrs&, size_t, size_t, const std::string&) {
return std::make_tuple();
}
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, OrtKernelContext*>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
std::tuple<T> current = std::tuple<OrtKernelContext*>{context};
auto next = CreateTuple<ith_input, ith_output, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, OrtKernelContext&>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
std::tuple<T> current = std::tuple<OrtKernelContext&>{*context};
auto next = CreateTuple<ith_input, ith_output, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
#ifdef ORT_CUDA_CTX
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, const CudaContext&>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
thread_local CudaContext cuda_context;
cuda_context.Init(*context);
std::tuple<T> current = std::tuple<const CudaContext&>{cuda_context};
auto next = CreateTuple<ith_input, ith_output, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
#endif
#ifdef ORT_ROCM_CTX
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, const RocmContext&>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
thread_local RocmContext rocm_context;
rocm_context.Init(*context);
std::tuple<T> current = std::tuple<const RocmContext&>{rocm_context};
auto next = CreateTuple<ith_input, ith_output, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
#endif
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, const TensorArray*>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
args.push_back(std::make_unique<TensorArray>(context, ith_input, true));
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(args.back().get())};
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, const TensorArray&>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
args.push_back(std::make_unique<TensorArray>(context, ith_input, true));
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(*args.back().get())};
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, TensorArray*>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
args.push_back(std::make_unique<TensorArray>(context, ith_output, false));
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(args.back().get())};
auto next = CreateTuple<ith_input, ith_output + 1, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
template <size_t ith_input, size_t ith_output, typename T, typename... Ts>
static typename std::enable_if<std::is_same<T, TensorArray&>::value, std::tuple<T, Ts...>>::type
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) {
args.push_back(std::make_unique<TensorArray>(context, ith_output, false));
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(*args.back().get())};
auto next = CreateTuple<ith_input, ith_output + 1, Ts...>(context, args, num_input, num_output, ep);
return std::tuple_cat(current, next);
}
#define CREATE_TUPLE_INPUT(data_type) \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, const Custom::Tensor<data_type>*>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(args.back().get())}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, const Custom::Tensor<data_type>&>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(*args.back().get())}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, std::optional<const Custom::Tensor<data_type>*>>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
if (ith_input < num_input) { \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<Custom::Tensor<data_type>*>(args.back().get())}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} else { \
std::tuple<T> current = std::tuple<T>{}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, const Custom::Span<data_type>*>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
if ("CPUExecutionProvider" != ep) { \
ORT_CXX_API_THROW("span input could only be applied to CPU EP", OrtErrorCode::ORT_RUNTIME_EXCEPTION); \
} \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{&reinterpret_cast<Custom::Tensor<data_type>*>(args.back().get())->AsSpan()}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, const Custom::Span<data_type>&>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
if ("CPUExecutionProvider" != ep) { \
ORT_CXX_API_THROW("span input could only be applied to CPU EP", OrtErrorCode::ORT_RUNTIME_EXCEPTION); \
} \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<Custom::Tensor<data_type>*>(args.back().get())->AsSpan()}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, std::optional<const Custom::Span<data_type>*>>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
if (ith_input < num_input) { \
if ("CPUExecutionProvider" != ep) { \
ORT_CXX_API_THROW("span input could only be applied to CPU EP", OrtErrorCode::ORT_RUNTIME_EXCEPTION); \
} \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{&reinterpret_cast<Custom::Tensor<data_type>*>(args.back().get())->AsSpan()}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} else { \
std::tuple<T> current = std::tuple<T>{}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, data_type>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
if ("CPUExecutionProvider" != ep) { \
ORT_CXX_API_THROW("scalar input could only be applied to CPU EP", OrtErrorCode::ORT_RUNTIME_EXCEPTION); \
} \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<Custom::Tensor<data_type>*>(args.back().get())->AsScalar()}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, std::optional<data_type>>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
if (ith_input < num_input) { \
if ("CPUExecutionProvider" != ep) { \
ORT_CXX_API_THROW("scalar input could only be applied to CPU EP", OrtErrorCode::ORT_RUNTIME_EXCEPTION); \
} \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_input, true)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<Custom::Tensor<data_type>*>(args.back().get())->AsScalar()}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} else { \
std::tuple<T> current = std::tuple<T>{}; \
auto next = CreateTuple<ith_input + 1, ith_output, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
}
#define CREATE_TUPLE_OUTPUT(data_type) \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, Custom::Tensor<data_type>*>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_output, false)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(args.back().get())}; \
auto next = CreateTuple<ith_input, ith_output + 1, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, Custom::Tensor<data_type>&>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_output, false)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<T>(*args.back().get())}; \
auto next = CreateTuple<ith_input, ith_output + 1, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
template <size_t ith_input, size_t ith_output, typename T, typename... Ts> \
static typename std::enable_if<std::is_same<T, std::optional<Custom::Tensor<data_type>*>>::value, std::tuple<T, Ts...>>::type \
CreateTuple(OrtKernelContext* context, ArgPtrs& args, size_t num_input, size_t num_output, const std::string& ep) { \
if (ith_output < num_output) { \
args.push_back(std::make_unique<Custom::Tensor<data_type>>(context, ith_output, false)); \
std::tuple<T> current = std::tuple<T>{reinterpret_cast<Custom::Tensor<data_type>*>(args.back().get())}; \
auto next = CreateTuple<ith_input, ith_output + 1, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} else { \
std::tuple<T> current = std::tuple<T>{}; \
auto next = CreateTuple<ith_input, ith_output + 1, Ts...>(context, args, num_input, num_output, ep); \
return std::tuple_cat(current, next); \
} \
}
#define CREATE_TUPLE(data_type) \
CREATE_TUPLE_INPUT(data_type) \
CREATE_TUPLE_OUTPUT(data_type)
CREATE_TUPLE(bool)
CREATE_TUPLE(float)
CREATE_TUPLE(Ort::Float16_t)
CREATE_TUPLE(Ort::BFloat16_t)
CREATE_TUPLE(double)
CREATE_TUPLE(int8_t)
CREATE_TUPLE(int16_t)
CREATE_TUPLE(int32_t)
CREATE_TUPLE(int64_t)
CREATE_TUPLE(uint8_t)
CREATE_TUPLE(uint16_t)
CREATE_TUPLE(uint32_t)
CREATE_TUPLE(uint64_t)
CREATE_TUPLE(std::string)
CREATE_TUPLE_INPUT(std::string_view)
CREATE_TUPLE(Ort::Float8E4M3FN_t)
CREATE_TUPLE(Ort::Float8E4M3FNUZ_t)
CREATE_TUPLE(Ort::Float8E5M2_t)
CREATE_TUPLE(Ort::Float8E5M2FNUZ_t)
// ParseArgs ...
template <typename... Ts>
static typename std::enable_if<0 == sizeof...(Ts)>::type
ParseArgs(std::vector<ONNXTensorElementDataType>&, std::vector<ONNXTensorElementDataType>&) {
}
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, OrtKernelContext*>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
ParseArgs<Ts...>(input_types, output_types);
}
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, OrtKernelContext&>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
ParseArgs<Ts...>(input_types, output_types);
}
#ifdef ORT_CUDA_CTX
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, const CudaContext&>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
ParseArgs<Ts...>(input_types, output_types);
}
#endif
#ifdef ORT_ROCM_CTX
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, const RocmContext&>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
ParseArgs<Ts...>(input_types, output_types);
}
#endif
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, const TensorArray&>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
input_types.push_back(ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED);
ParseArgs<Ts...>(input_types, output_types);
}
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, const TensorArray*>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
input_types.push_back(ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED);
ParseArgs<Ts...>(input_types, output_types);
}
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, TensorArray&>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
output_types.push_back(ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED);
ParseArgs<Ts...>(input_types, output_types);
}
template <typename T, typename... Ts>
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, TensorArray*>::value>::type
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) {
output_types.push_back(ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED);
ParseArgs<Ts...>(input_types, output_types);
}
#define PARSE_INPUT_BASE(pack_type, onnx_type) \
template <typename T, typename... Ts> \
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, pack_type>::value>::type \
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) { \
input_types.push_back(onnx_type); \
ParseArgs<Ts...>(input_types, output_types); \
} \
template <typename T, typename... Ts> \
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, const std::optional<pack_type>>::value>::type \
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) { \
input_types.push_back(onnx_type); \
ParseArgs<Ts...>(input_types, output_types); \
} \
template <typename T, typename... Ts> \
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, std::optional<pack_type>>::value>::type \
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) { \
input_types.push_back(onnx_type); \
ParseArgs<Ts...>(input_types, output_types); \
}
#define PARSE_INPUT(data_type, onnx_type) \
PARSE_INPUT_BASE(const Custom::Tensor<data_type>*, onnx_type) \
PARSE_INPUT_BASE(const Custom::Tensor<data_type>&, onnx_type) \
PARSE_INPUT_BASE(const Custom::Span<data_type>*, onnx_type) \
PARSE_INPUT_BASE(const Custom::Span<data_type>&, onnx_type) \
PARSE_INPUT_BASE(data_type, onnx_type)
#define PARSE_OUTPUT(data_type, onnx_type) \
template <typename T, typename... Ts> \
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, Custom::Tensor<data_type>*>::value>::type \
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) { \
output_types.push_back(onnx_type); \
ParseArgs<Ts...>(input_types, output_types); \
} \
template <typename T, typename... Ts> \
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, Custom::Tensor<data_type>&>::value>::type \
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) { \
output_types.push_back(onnx_type); \
ParseArgs<Ts...>(input_types, output_types); \
} \
template <typename T, typename... Ts> \
static typename std::enable_if<0 <= sizeof...(Ts) && std::is_same<T, std::optional<Custom::Tensor<data_type>*>>::value>::type \
ParseArgs(std::vector<ONNXTensorElementDataType>& input_types, std::vector<ONNXTensorElementDataType>& output_types) { \
output_types.push_back(onnx_type); \
ParseArgs<Ts...>(input_types, output_types); \
}
#define PARSE_ARGS(data_type, onnx_type) \
PARSE_INPUT(data_type, onnx_type) \
PARSE_OUTPUT(data_type, onnx_type)
PARSE_ARGS(bool, ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL)
PARSE_ARGS(float, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT)
PARSE_ARGS(Ort::Float16_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16)
PARSE_ARGS(Ort::BFloat16_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16)
PARSE_ARGS(double, ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE)
PARSE_ARGS(int8_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8)
PARSE_ARGS(int16_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16)
PARSE_ARGS(int32_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32)
PARSE_ARGS(int64_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64)
PARSE_ARGS(uint8_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8)
PARSE_ARGS(uint16_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16)
PARSE_ARGS(uint32_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32)
PARSE_ARGS(uint64_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64)
PARSE_ARGS(std::string, ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING)
PARSE_ARGS(std::string_view, ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING) // todo - remove string_view output
PARSE_ARGS(Ort::Float8E4M3FN_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E4M3FN)
PARSE_ARGS(Ort::Float8E4M3FNUZ_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E4M3FNUZ)
PARSE_ARGS(Ort::Float8E5M2_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E5M2)
PARSE_ARGS(Ort::Float8E5M2FNUZ_t, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E5M2FNUZ)
OrtLiteCustomOp(const char* op_name,
const char* execution_provider,
ShapeInferFn shape_infer_fn,
int start_ver = 1,
int end_ver = MAX_CUSTOM_OP_END_VER) : op_name_(op_name),
execution_provider_(execution_provider),
shape_infer_fn_(shape_infer_fn),
start_ver_(start_ver),
end_ver_(end_ver) {
OrtCustomOp::version = ORT_API_VERSION;
OrtCustomOp::GetName = [](const OrtCustomOp* op) { return static_cast<const OrtLiteCustomOp*>(op)->op_name_.c_str(); };
OrtCustomOp::GetExecutionProviderType = [](const OrtCustomOp* op) { return ((OrtLiteCustomOp*)op)->execution_provider_.c_str(); };
OrtCustomOp::GetInputMemoryType = [](const OrtCustomOp*, size_t) { return OrtMemTypeDefault; };
OrtCustomOp::GetInputTypeCount = [](const OrtCustomOp* op) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->input_types_.size();
};
OrtCustomOp::GetInputType = [](const OrtCustomOp* op, size_t indice) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->input_types_[indice];
};
OrtCustomOp::GetOutputTypeCount = [](const OrtCustomOp* op) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->output_types_.size();
};
OrtCustomOp::GetOutputType = [](const OrtCustomOp* op, size_t indice) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->output_types_[indice];
};
OrtCustomOp::GetInputCharacteristic = [](const OrtCustomOp* op, size_t indice) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->input_types_[indice] == ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED ? INPUT_OUTPUT_VARIADIC : INPUT_OUTPUT_OPTIONAL;
};
OrtCustomOp::GetOutputCharacteristic = [](const OrtCustomOp* op, size_t indice) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->output_types_[indice] == ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED ? INPUT_OUTPUT_VARIADIC : INPUT_OUTPUT_OPTIONAL;
};
OrtCustomOp::GetVariadicInputMinArity = [](const OrtCustomOp*) {
return 1;
};
OrtCustomOp::GetVariadicInputHomogeneity = [](const OrtCustomOp*) {
return 0;
};
OrtCustomOp::GetVariadicOutputMinArity = [](const OrtCustomOp*) {
return 1;
};
OrtCustomOp::GetVariadicOutputHomogeneity = [](const OrtCustomOp*) {
return 0;
};
OrtCustomOp::GetVariadicInputMinArity = [](const OrtCustomOp*) { return 0; };
OrtCustomOp::GetVariadicInputHomogeneity = [](const OrtCustomOp*) { return 0; };
OrtCustomOp::GetVariadicOutputMinArity = [](const OrtCustomOp*) { return 0; };
OrtCustomOp::GetVariadicOutputHomogeneity = [](const OrtCustomOp*) { return 0; };
OrtCustomOp::CreateKernelV2 = {};
OrtCustomOp::KernelComputeV2 = {};
OrtCustomOp::KernelCompute = {};
OrtCustomOp::InferOutputShapeFn = {};
OrtCustomOp::GetStartVersion = [](const OrtCustomOp* op) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->start_ver_;
};
OrtCustomOp::GetEndVersion = [](const OrtCustomOp* op) {
auto self = reinterpret_cast<const OrtLiteCustomOp*>(op);
return self->end_ver_;
};
OrtCustomOp::GetMayInplace = {};
OrtCustomOp::ReleaseMayInplace = {};
OrtCustomOp::GetAliasMap = {};
OrtCustomOp::ReleaseAliasMap = {};
}
const std::string op_name_;
const std::string execution_provider_;
std::vector<ONNXTensorElementDataType> input_types_;
std::vector<ONNXTensorElementDataType> output_types_;
ShapeInferFn shape_infer_fn_ = {};
int start_ver_ = 1;
int end_ver_ = MAX_CUSTOM_OP_END_VER;
void* compute_fn_ = {};
void* compute_fn_return_status_ = {};
};
//////////////////////////// OrtLiteCustomFunc ////////////////////////////////
// The struct is to implement function-as-op.
// E.g. a function might be defined as:
// void Filter(const Ort::Custom::Tensor<float>& floats_in, Ort::Custom::Tensor<float>& floats_out) { ... }
// It could be registered this way:
// Ort::CustomOpDomain v2_domain{"v2"};
// std::unique_ptr<OrtLiteCustomOp> fil_op_ptr{Ort::Custom::CreateLiteCustomOp("Filter", "CPUExecutionProvider", Filter)};
// v2_domain.Add(fil_op_ptr.get());
// session_options.Add(v2_domain);
// For the complete example, please search keyword "LiteCustomOpTest" under "<cloned_src_dir>/onnxruntime/test/".
template <typename... Args>
struct OrtLiteCustomFunc : public OrtLiteCustomOp {
using ComputeFn = void (*)(Args...);
using ComputeFnReturnStatus = Status (*)(Args...);
using MyType = OrtLiteCustomFunc<Args...>;
struct Kernel {
size_t num_input_{};
size_t num_output_{};
ComputeFn compute_fn_{};
ComputeFnReturnStatus compute_fn_return_status_{};
std::string ep_{};
};
OrtLiteCustomFunc(const char* op_name,
const char* execution_provider,
ComputeFn compute_fn,
ShapeInferFn shape_infer_fn = {},
int start_ver = 1,
int end_ver = MAX_CUSTOM_OP_END_VER) : OrtLiteCustomOp(op_name, execution_provider, shape_infer_fn, start_ver, end_ver) {
compute_fn_ = reinterpret_cast<void*>(compute_fn);
ParseArgs<Args...>(input_types_, output_types_);
OrtCustomOp::KernelCompute = [](void* op_kernel, OrtKernelContext* context) {
auto kernel = reinterpret_cast<Kernel*>(op_kernel);
std::vector<ArgPtr> args;
auto t = CreateTuple<0, 0, Args...>(context, args, kernel->num_input_, kernel->num_output_, kernel->ep_);
std::apply([kernel](Args const&... t_args) { kernel->compute_fn_(t_args...); }, t);
};
OrtCustomOp::CreateKernel = [](const OrtCustomOp* this_, const OrtApi* ort_api, const OrtKernelInfo* info) {
auto kernel = std::make_unique<Kernel>();
auto me = static_cast<const MyType*>(this_);
kernel->compute_fn_ = reinterpret_cast<ComputeFn>(me->compute_fn_);
Ort::ThrowOnError(ort_api->KernelInfo_GetInputCount(info, &kernel->num_input_));
Ort::ThrowOnError(ort_api->KernelInfo_GetOutputCount(info, &kernel->num_output_));
auto self = static_cast<const OrtLiteCustomFunc*>(this_);
kernel->ep_ = self->execution_provider_;
return reinterpret_cast<void*>(kernel.release());
};
OrtCustomOp::KernelDestroy = [](void* op_kernel) {
delete reinterpret_cast<Kernel*>(op_kernel);
};
if (shape_infer_fn_) {
OrtCustomOp::InferOutputShapeFn = [](const OrtCustomOp* op, OrtShapeInferContext* ort_ctx) -> OrtStatusPtr {
auto shape_info_fn = static_cast<const MyType*>(op)->shape_infer_fn_;
ShapeInferContext ctx(&GetApi(), ort_ctx);
return shape_info_fn(ctx);
};
}
}
OrtLiteCustomFunc(const char* op_name,
const char* execution_provider,
ComputeFnReturnStatus compute_fn_return_status,
ShapeInferFn shape_infer_fn = {},
int start_ver = 1,
int end_ver = MAX_CUSTOM_OP_END_VER) : OrtLiteCustomOp(op_name, execution_provider, shape_infer_fn, start_ver, end_ver) {
compute_fn_return_status_ = reinterpret_cast<void*>(compute_fn_return_status);
ParseArgs<Args...>(input_types_, output_types_);
OrtCustomOp::KernelComputeV2 = [](void* op_kernel, OrtKernelContext* context) -> OrtStatusPtr {
auto kernel = reinterpret_cast<Kernel*>(op_kernel);
std::vector<ArgPtr> args;
auto t = CreateTuple<0, 0, Args...>(context, args, kernel->num_input_, kernel->num_output_, kernel->ep_);
return std::apply([kernel](Args const&... t_args) { Status status = kernel->compute_fn_return_status_(t_args...); return status.release(); }, t);
};
OrtCustomOp::CreateKernel = [](const OrtCustomOp* this_, const OrtApi* ort_api, const OrtKernelInfo* info) {
auto kernel = std::make_unique<Kernel>();
auto me = static_cast<const MyType*>(this_);
kernel->compute_fn_return_status_ = reinterpret_cast<ComputeFnReturnStatus>(me->compute_fn_return_status_);
Ort::ThrowOnError(ort_api->KernelInfo_GetInputCount(info, &kernel->num_input_));
Ort::ThrowOnError(ort_api->KernelInfo_GetOutputCount(info, &kernel->num_output_));
auto self = static_cast<const OrtLiteCustomFunc*>(this_);
kernel->ep_ = self->execution_provider_;
return reinterpret_cast<void*>(kernel.release());
};
OrtCustomOp::KernelDestroy = [](void* op_kernel) {
delete reinterpret_cast<Kernel*>(op_kernel);
};
if (shape_infer_fn_) {
OrtCustomOp::InferOutputShapeFn = [](const OrtCustomOp* op, OrtShapeInferContext* ort_ctx) -> OrtStatusPtr {
auto shape_info_fn = static_cast<const MyType*>(op)->shape_infer_fn_;
ShapeInferContext ctx(&GetApi(), ort_ctx);
return shape_info_fn(ctx);
};
}
}
}; // struct OrtLiteCustomFunc
/////////////////////////// OrtLiteCustomStruct ///////////////////////////
// The struct is to implement struct-as-op.
// E.g. a struct might be defined as:
// struct Merge {
// Merge(const OrtApi* ort_api, const OrtKernelInfo* info) {...}
// void Compute(const Ort::Custom::Tensor<std::string_view>& strings_in,
// std::string_view string_in,
// Ort::Custom::Tensor<std::string>* strings_out) {...}
// bool reverse_ = false;
// };
// It could be registered this way:
// Ort::CustomOpDomain v2_domain{"v2"};
// std::unique_ptr<OrtLiteCustomOp> mrg_op_ptr{Ort::Custom::CreateLiteCustomOp<Merge>("Merge", "CPUExecutionProvider")};
// v2_domain.Add(mrg_op_ptr.get());
// session_options.Add(v2_domain);
// For the complete example, please search keyword "LiteCustomOpTest" under "<cloned_src_dir>/onnxruntime/test/".
template <typename CustomOp>
struct OrtLiteCustomStruct : public OrtLiteCustomOp {
template <typename... Args>
using CustomComputeFn = void (CustomOp::*)(Args...);
template <typename... Args>
using CustomComputeFnReturnStatus = Status (CustomOp::*)(Args...);
using MyType = OrtLiteCustomStruct<CustomOp>;
struct Kernel {
size_t num_input_{};
size_t num_output_{};
std::unique_ptr<CustomOp> custom_op_;
std::string ep_{};
};
OrtLiteCustomStruct(const char* op_name,
const char* execution_provider,
int start_ver = 1,
int end_ver = MAX_CUSTOM_OP_END_VER) : OrtLiteCustomOp(op_name, execution_provider, {}, start_ver, end_ver) {
SetCompute(&CustomOp::Compute);
OrtCustomOp::CreateKernel = [](const OrtCustomOp* this_, const OrtApi* ort_api, const OrtKernelInfo* info) {
auto kernel = std::make_unique<Kernel>();
Ort::ThrowOnError(ort_api->KernelInfo_GetInputCount(info, &kernel->num_input_));
Ort::ThrowOnError(ort_api->KernelInfo_GetOutputCount(info, &kernel->num_output_));
kernel->custom_op_ = std::make_unique<CustomOp>(ort_api, info);
auto self = static_cast<const OrtLiteCustomStruct*>(this_);
kernel->ep_ = self->execution_provider_;
return reinterpret_cast<void*>(kernel.release());
};
OrtCustomOp::KernelDestroy = [](void* op_kernel) {
delete reinterpret_cast<Kernel*>(op_kernel);
};
SetShapeInfer<CustomOp>(0);
}
template <typename... Args>
void SetCompute(CustomComputeFn<Args...>) {
ParseArgs<Args...>(input_types_, output_types_);
OrtCustomOp::KernelCompute = [](void* op_kernel, OrtKernelContext* context) {
auto kernel = reinterpret_cast<Kernel*>(op_kernel);
ArgPtrs args;
auto t = CreateTuple<0, 0, Args...>(context, args, kernel->num_input_, kernel->num_output_, kernel->ep_);
std::apply([kernel](Args const&... t_args) { kernel->custom_op_->Compute(t_args...); }, t);
};
}
template <typename... Args>
void SetCompute(CustomComputeFnReturnStatus<Args...>) {
ParseArgs<Args...>(input_types_, output_types_);
OrtCustomOp::KernelComputeV2 = [](void* op_kernel, OrtKernelContext* context) -> OrtStatusPtr {
auto kernel = reinterpret_cast<Kernel*>(op_kernel);
ArgPtrs args;
auto t = CreateTuple<0, 0, Args...>(context, args, kernel->num_input_, kernel->num_output_, kernel->ep_);
return std::apply([kernel](Args const&... t_args) { Status status = kernel->custom_op_->Compute(t_args...); return status.release(); }, t);
};
}
template <typename C>
decltype(&C::InferOutputShape) SetShapeInfer(decltype(&C::InferOutputShape)) {
OrtCustomOp::InferOutputShapeFn = [](const OrtCustomOp*, OrtShapeInferContext* ort_ctx) -> OrtStatusPtr {
ShapeInferContext ctx(&GetApi(), ort_ctx);
return C::InferOutputShape(ctx);
};
return {};
}
template <typename C>
void SetShapeInfer(...) {
OrtCustomOp::InferOutputShapeFn = {};
}
}; // struct OrtLiteCustomStruct
/////////////////////////// CreateLiteCustomOp ////////////////////////////
template <typename... Args>
OrtLiteCustomOp* CreateLiteCustomOp(const char* op_name,
const char* execution_provider,
void (*custom_compute_fn)(Args...),
Status (*shape_infer_fn)(ShapeInferContext&) = {},
int start_ver = 1,
int end_ver = MAX_CUSTOM_OP_END_VER) {
using LiteOp = OrtLiteCustomFunc<Args...>;
return std::make_unique<LiteOp>(op_name, execution_provider, custom_compute_fn, shape_infer_fn, start_ver, end_ver).release();
}
template <typename... Args>
OrtLiteCustomOp* CreateLiteCustomOp(const char* op_name,
const char* execution_provider,
Status (*custom_compute_fn_v2)(Args...),
Status (*shape_infer_fn)(ShapeInferContext&) = {},
int start_ver = 1,
int end_ver = MAX_CUSTOM_OP_END_VER) {
using LiteOp = OrtLiteCustomFunc<Args...>;
return std::make_unique<LiteOp>(op_name, execution_provider, custom_compute_fn_v2, shape_infer_fn, start_ver, end_ver).release();
}
template <typename CustomOp>
OrtLiteCustomOp* CreateLiteCustomOp(const char* op_name,
const char* execution_provider,
int start_ver = 1,
int end_ver = MAX_CUSTOM_OP_END_VER) {
using LiteOp = OrtLiteCustomStruct<CustomOp>;
return std::make_unique<LiteOp>(op_name, execution_provider, start_ver, end_ver).release();
}
} // namespace Custom
} // namespace Ort