You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

541 lines
18 KiB

4 months ago
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
#include <stdint.h>
#include <cmath>
#include <cstring>
#include <limits>
namespace onnxruntime_float16 {
namespace detail {
enum class endian {
#if defined(_WIN32)
little = 0,
big = 1,
native = little,
#elif defined(__GNUC__) || defined(__clang__)
little = __ORDER_LITTLE_ENDIAN__,
big = __ORDER_BIG_ENDIAN__,
native = __BYTE_ORDER__,
#else
#error onnxruntime_float16::detail::endian is not implemented in this environment.
#endif
};
static_assert(
endian::native == endian::little || endian::native == endian::big,
"Only little-endian or big-endian native byte orders are supported.");
} // namespace detail
/// <summary>
/// Shared implementation between public and internal classes. CRTP pattern.
/// </summary>
template <class Derived>
struct Float16Impl {
protected:
/// <summary>
/// Converts from float to uint16_t float16 representation
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
constexpr static uint16_t ToUint16Impl(float v) noexcept;
/// <summary>
/// Converts float16 to float
/// </summary>
/// <returns>float representation of float16 value</returns>
float ToFloatImpl() const noexcept;
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
uint16_t AbsImpl() const noexcept {
return static_cast<uint16_t>(val & ~kSignMask);
}
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
uint16_t NegateImpl() const noexcept {
return IsNaN() ? val : static_cast<uint16_t>(val ^ kSignMask);
}
public:
// uint16_t special values
static constexpr uint16_t kSignMask = 0x8000U;
static constexpr uint16_t kBiasedExponentMask = 0x7C00U;
static constexpr uint16_t kPositiveInfinityBits = 0x7C00U;
static constexpr uint16_t kNegativeInfinityBits = 0xFC00U;
static constexpr uint16_t kPositiveQNaNBits = 0x7E00U;
static constexpr uint16_t kNegativeQNaNBits = 0xFE00U;
static constexpr uint16_t kEpsilonBits = 0x4170U;
static constexpr uint16_t kMinValueBits = 0xFBFFU; // Minimum normal number
static constexpr uint16_t kMaxValueBits = 0x7BFFU; // Largest normal number
static constexpr uint16_t kOneBits = 0x3C00U;
static constexpr uint16_t kMinusOneBits = 0xBC00U;
uint16_t val{0};
Float16Impl() = default;
/// <summary>
/// Checks if the value is negative
/// </summary>
/// <returns>true if negative</returns>
bool IsNegative() const noexcept {
return static_cast<int16_t>(val) < 0;
}
/// <summary>
/// Tests if the value is NaN
/// </summary>
/// <returns>true if NaN</returns>
bool IsNaN() const noexcept {
return AbsImpl() > kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is finite
/// </summary>
/// <returns>true if finite</returns>
bool IsFinite() const noexcept {
return AbsImpl() < kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents positive infinity.
/// </summary>
/// <returns>true if positive infinity</returns>
bool IsPositiveInfinity() const noexcept {
return val == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents negative infinity
/// </summary>
/// <returns>true if negative infinity</returns>
bool IsNegativeInfinity() const noexcept {
return val == kNegativeInfinityBits;
}
/// <summary>
/// Tests if the value is either positive or negative infinity.
/// </summary>
/// <returns>True if absolute value is infinity</returns>
bool IsInfinity() const noexcept {
return AbsImpl() == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is NaN or zero. Useful for comparisons.
/// </summary>
/// <returns>True if NaN or zero.</returns>
bool IsNaNOrZero() const noexcept {
auto abs = AbsImpl();
return (abs == 0 || abs > kPositiveInfinityBits);
}
/// <summary>
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN).
/// </summary>
/// <returns>True if so</returns>
bool IsNormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) != 0); // is not subnormal (has a non-zero exponent)
}
/// <summary>
/// Tests if the value is subnormal (denormal).
/// </summary>
/// <returns>True if so</returns>
bool IsSubnormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) == 0); // is subnormal (has a zero exponent)
}
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
Derived Abs() const noexcept { return Derived::FromBits(AbsImpl()); }
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
Derived Negate() const noexcept { return Derived::FromBits(NegateImpl()); }
/// <summary>
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
/// for two values by or'ing the private bits together and stripping the sign. They are both zero,
/// and therefore equivalent, if the resulting value is still zero.
/// </summary>
/// <param name="lhs">first value</param>
/// <param name="rhs">second value</param>
/// <returns>True if both arguments represent zero</returns>
static bool AreZero(const Float16Impl& lhs, const Float16Impl& rhs) noexcept {
return static_cast<uint16_t>((lhs.val | rhs.val) & ~kSignMask) == 0;
}
bool operator==(const Float16Impl& rhs) const noexcept {
if (IsNaN() || rhs.IsNaN()) {
// IEEE defines that NaN is not equal to anything, including itself.
return false;
}
return val == rhs.val;
}
bool operator!=(const Float16Impl& rhs) const noexcept { return !(*this == rhs); }
bool operator<(const Float16Impl& rhs) const noexcept {
if (IsNaN() || rhs.IsNaN()) {
// IEEE defines that NaN is unordered with respect to everything, including itself.
return false;
}
const bool left_is_negative = IsNegative();
if (left_is_negative != rhs.IsNegative()) {
// When the signs of left and right differ, we know that left is less than right if it is
// the negative value. The exception to this is if both values are zero, in which case IEEE
// says they should be equal, even if the signs differ.
return left_is_negative && !AreZero(*this, rhs);
}
return (val != rhs.val) && ((val < rhs.val) ^ left_is_negative);
}
};
// The following Float16_t conversions are based on the code from
// Eigen library.
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
// The original license follows:
//
// Copyright (c) Fabian Giesen, 2016
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace detail {
union float32_bits {
unsigned int u;
float f;
};
} // namespace detail
template <class Derived>
inline constexpr uint16_t Float16Impl<Derived>::ToUint16Impl(float v) noexcept {
detail::float32_bits f{};
f.f = v;
constexpr detail::float32_bits f32infty = {255 << 23};
constexpr detail::float32_bits f16max = {(127 + 16) << 23};
constexpr detail::float32_bits denorm_magic = {((127 - 15) + (23 - 10) + 1) << 23};
constexpr unsigned int sign_mask = 0x80000000u;
uint16_t val = static_cast<uint16_t>(0x0u);
unsigned int sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
val = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
} else { // (De)normalized number or zero
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
// use a magic value to align our 10 mantissa bits at the bottom of
// the float. as long as FP addition is round-to-nearest-even this
// just works.
f.f += denorm_magic.f;
// and one integer subtract of the bias later, we have our final float!
val = static_cast<uint16_t>(f.u - denorm_magic.u);
} else {
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
// Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but
// without arithmetic overflow.
f.u += 0xc8000fffU;
// rounding bias part 2
f.u += mant_odd;
// take the bits!
val = static_cast<uint16_t>(f.u >> 13);
}
}
val |= static_cast<uint16_t>(sign >> 16);
return val;
}
template <class Derived>
inline float Float16Impl<Derived>::ToFloatImpl() const noexcept {
constexpr detail::float32_bits magic = {113 << 23};
constexpr unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
detail::float32_bits o{};
o.u = (val & 0x7fff) << 13; // exponent/mantissa bits
unsigned int exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) { // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
} else if (exp == 0) { // Zero/Denormal?
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // re-normalize
}
// Attempt to workaround the Internal Compiler Error on ARM64
// for bitwise | operator, including std::bitset
#if (defined _MSC_VER) && (defined _M_ARM || defined _M_ARM64 || defined _M_ARM64EC)
if (IsNegative()) {
return -o.f;
}
#else
// original code:
o.u |= (val & 0x8000U) << 16U; // sign bit
#endif
return o.f;
}
/// Shared implementation between public and internal classes. CRTP pattern.
template <class Derived>
struct BFloat16Impl {
protected:
/// <summary>
/// Converts from float to uint16_t float16 representation
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
static uint16_t ToUint16Impl(float v) noexcept;
/// <summary>
/// Converts bfloat16 to float
/// </summary>
/// <returns>float representation of bfloat16 value</returns>
float ToFloatImpl() const noexcept;
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
uint16_t AbsImpl() const noexcept {
return static_cast<uint16_t>(val & ~kSignMask);
}
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
uint16_t NegateImpl() const noexcept {
return IsNaN() ? val : static_cast<uint16_t>(val ^ kSignMask);
}
public:
// uint16_t special values
static constexpr uint16_t kSignMask = 0x8000U;
static constexpr uint16_t kBiasedExponentMask = 0x7F80U;
static constexpr uint16_t kPositiveInfinityBits = 0x7F80U;
static constexpr uint16_t kNegativeInfinityBits = 0xFF80U;
static constexpr uint16_t kPositiveQNaNBits = 0x7FC1U;
static constexpr uint16_t kNegativeQNaNBits = 0xFFC1U;
static constexpr uint16_t kSignaling_NaNBits = 0x7F80U;
static constexpr uint16_t kEpsilonBits = 0x0080U;
static constexpr uint16_t kMinValueBits = 0xFF7FU;
static constexpr uint16_t kMaxValueBits = 0x7F7FU;
static constexpr uint16_t kRoundToNearest = 0x7FFFU;
static constexpr uint16_t kOneBits = 0x3F80U;
static constexpr uint16_t kMinusOneBits = 0xBF80U;
uint16_t val{0};
BFloat16Impl() = default;
/// <summary>
/// Checks if the value is negative
/// </summary>
/// <returns>true if negative</returns>
bool IsNegative() const noexcept {
return static_cast<int16_t>(val) < 0;
}
/// <summary>
/// Tests if the value is NaN
/// </summary>
/// <returns>true if NaN</returns>
bool IsNaN() const noexcept {
return AbsImpl() > kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is finite
/// </summary>
/// <returns>true if finite</returns>
bool IsFinite() const noexcept {
return AbsImpl() < kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents positive infinity.
/// </summary>
/// <returns>true if positive infinity</returns>
bool IsPositiveInfinity() const noexcept {
return val == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents negative infinity
/// </summary>
/// <returns>true if negative infinity</returns>
bool IsNegativeInfinity() const noexcept {
return val == kNegativeInfinityBits;
}
/// <summary>
/// Tests if the value is either positive or negative infinity.
/// </summary>
/// <returns>True if absolute value is infinity</returns>
bool IsInfinity() const noexcept {
return AbsImpl() == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is NaN or zero. Useful for comparisons.
/// </summary>
/// <returns>True if NaN or zero.</returns>
bool IsNaNOrZero() const noexcept {
auto abs = AbsImpl();
return (abs == 0 || abs > kPositiveInfinityBits);
}
/// <summary>
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN).
/// </summary>
/// <returns>True if so</returns>
bool IsNormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) != 0); // is not subnormal (has a non-zero exponent)
}
/// <summary>
/// Tests if the value is subnormal (denormal).
/// </summary>
/// <returns>True if so</returns>
bool IsSubnormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) == 0); // is subnormal (has a zero exponent)
}
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
Derived Abs() const noexcept { return Derived::FromBits(AbsImpl()); }
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
Derived Negate() const noexcept { return Derived::FromBits(NegateImpl()); }
/// <summary>
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
/// for two values by or'ing the private bits together and stripping the sign. They are both zero,
/// and therefore equivalent, if the resulting value is still zero.
/// </summary>
/// <param name="lhs">first value</param>
/// <param name="rhs">second value</param>
/// <returns>True if both arguments represent zero</returns>
static bool AreZero(const BFloat16Impl& lhs, const BFloat16Impl& rhs) noexcept {
// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
// for two values by or'ing the private bits together and stripping the sign. They are both zero,
// and therefore equivalent, if the resulting value is still zero.
return static_cast<uint16_t>((lhs.val | rhs.val) & ~kSignMask) == 0;
}
};
template <class Derived>
inline uint16_t BFloat16Impl<Derived>::ToUint16Impl(float v) noexcept {
uint16_t result;
if (std::isnan(v)) {
result = kPositiveQNaNBits;
} else {
auto get_msb_half = [](float fl) {
uint16_t result;
#ifdef __cpp_if_constexpr
if constexpr (detail::endian::native == detail::endian::little) {
#else
if (detail::endian::native == detail::endian::little) {
#endif
std::memcpy(&result, reinterpret_cast<char*>(&fl) + sizeof(uint16_t), sizeof(uint16_t));
} else {
std::memcpy(&result, &fl, sizeof(uint16_t));
}
return result;
};
uint16_t upper_bits = get_msb_half(v);
union {
uint32_t U32;
float F32;
};
F32 = v;
U32 += (upper_bits & 1) + kRoundToNearest;
result = get_msb_half(F32);
}
return result;
}
template <class Derived>
inline float BFloat16Impl<Derived>::ToFloatImpl() const noexcept {
if (IsNaN()) {
return std::numeric_limits<float>::quiet_NaN();
}
float result;
char* const first = reinterpret_cast<char*>(&result);
char* const second = first + sizeof(uint16_t);
#ifdef __cpp_if_constexpr
if constexpr (detail::endian::native == detail::endian::little) {
#else
if (detail::endian::native == detail::endian::little) {
#endif
std::memset(first, 0, sizeof(uint16_t));
std::memcpy(second, &val, sizeof(uint16_t));
} else {
std::memcpy(first, &val, sizeof(uint16_t));
std::memset(second, 0, sizeof(uint16_t));
}
return result;
}
} // namespace onnxruntime_float16