You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

145 lines
5.8 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import re
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
from ultralytics.utils.torch_utils import model_info_for_loggers
try:
import clearml
from clearml import Task
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
from clearml.binding.matplotlib_bind import PatchedMatplotlib
assert hasattr(clearml, '__version__') # verify package is not directory
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS['clearml'] is True # verify integration is enabled
except (ImportError, AssertionError):
clearml = None
def _log_debug_samples(files, title='Debug Samples') -> None:
"""
Log files (images) as debug samples in the ClearML task.
Args:
files (list): A list of file paths in PosixPath format.
title (str): A title that groups together images with the same values.
"""
task = Task.current_task()
if task:
for f in files:
if f.exists():
it = re.search(r'_batch(\d+)', f.name)
iteration = int(it.groups()[0]) if it else 0
task.get_logger().report_image(title=title,
series=f.name.replace(it.group(), ''),
local_path=str(f),
iteration=iteration)
def _log_plot(title, plot_path) -> None:
"""
Log an image as a plot in the plot section of ClearML.
Args:
title (str): The title of the plot.
plot_path (str): The path to the saved image file.
"""
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
ax.imshow(img)
Task.current_task().get_logger().report_matplotlib_figure(title=title,
series='',
figure=fig,
report_interactive=False)
def on_pretrain_routine_start(trainer):
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML."""
try:
task = Task.current_task()
if task:
# Make sure the automatic pytorch and matplotlib bindings are disabled!
# We are logging these plots and model files manually in the integration
PatchPyTorchModelIO.update_current_task(None)
PatchedMatplotlib.update_current_task(None)
else:
task = Task.init(project_name=trainer.args.project or 'YOLOv8',
task_name=trainer.args.name,
tags=['YOLOv8'],
output_uri=True,
reuse_last_task_id=False,
auto_connect_frameworks={
'pytorch': False,
'matplotlib': False})
LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, '
'please add clearml-init and connect your arguments before initializing YOLO.')
task.connect(vars(trainer.args), name='General')
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}')
def on_train_epoch_end(trainer):
task = Task.current_task()
if task:
"""Logs debug samples for the first epoch of YOLO training."""
if trainer.epoch == 1:
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic')
"""Report the current training progress."""
for k, v in trainer.validator.metrics.results_dict.items():
task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch)
def on_fit_epoch_end(trainer):
"""Reports model information to logger at the end of an epoch."""
task = Task.current_task()
if task:
# You should have access to the validation bboxes under jdict
task.get_logger().report_scalar(title='Epoch Time',
series='Epoch Time',
value=trainer.epoch_time,
iteration=trainer.epoch)
if trainer.epoch == 0:
for k, v in model_info_for_loggers(trainer).items():
task.get_logger().report_single_value(k, v)
def on_val_end(validator):
"""Logs validation results including labels and predictions."""
if Task.current_task():
# Log val_labels and val_pred
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation')
def on_train_end(trainer):
"""Logs final model and its name on training completion."""
task = Task.current_task()
if task:
# Log final results, CM matrix + PR plots
files = [
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
for f in files:
_log_plot(title=f.stem, plot_path=f)
# Report final metrics
for k, v in trainer.validator.metrics.results_dict.items():
task.get_logger().report_single_value(k, v)
# Log the final model
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_val_end': on_val_end,
'on_train_end': on_train_end} if clearml else {}