You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

268 lines
9.6 KiB

from pathlib import Path
import torch
from ultralytics import yolo # noqa required for python usage
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
# map head: [model, trainer, validator, predictor]
MODEL_MAP = {
"classify": [
ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator',
'yolo.TYPE.classify.ClassificationPredictor'],
"detect": [
DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator',
'yolo.TYPE.detect.DetectionPredictor'],
"segment": [
SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator',
'yolo.TYPE.segment.SegmentationPredictor']}
class YOLO:
"""
Python interface which emulates a model-like behaviour by wrapping trainers.
"""
__init_key = object()
def __init__(self, init_key=None, type="v8") -> None:
"""
Args:
type (str): Type/version of models to use
"""
if init_key != YOLO.__init_key:
raise SyntaxError(HELP_MSG)
self.type = type
self.ModelClass = None
self.TrainerClass = None
self.ValidatorClass = None
self.PredictorClass = None
self.model = None
self.trainer = None
self.task = None
self.ckpt = None # if loaded from *.pt
self.cfg = None # if loaded from *.yaml
self.overrides = {}
self.init_disabled = False
@classmethod
def new(cls, cfg: str, verbose=True):
"""
Initializes a new model and infers the task type from the model definitions
Args:
cfg (str): model configuration file
verbsoe (bool): display model info on load
"""
cfg = check_yaml(cfg) # check YAML
cfg_dict = yaml_load(cfg) # model dict
obj = cls(init_key=cls.__init_key)
obj.task = obj._guess_task_from_head(cfg_dict["head"][-1][-2])
obj.ModelClass, obj.TrainerClass, obj.ValidatorClass, obj.PredictorClass = obj._guess_ops_from_task(obj.task)
obj.model = obj.ModelClass(cfg_dict, verbose=verbose) # initialize
obj.cfg = cfg
return obj
@classmethod
def load(cls, weights: str):
"""
Initializes a new model and infers the task type from the model head
Args:
weights (str): model checkpoint to be loaded
"""
obj = cls(init_key=cls.__init_key)
obj.ckpt = torch.load(weights, map_location="cpu")
obj.task = obj.ckpt["train_args"]["task"]
obj.overrides = dict(obj.ckpt["train_args"])
obj.overrides["device"] = '' # reset device
LOGGER.info("Device has been reset to ''")
obj.ModelClass, obj.TrainerClass, obj.ValidatorClass, obj.PredictorClass = obj._guess_ops_from_task(
task=obj.task)
obj.model = attempt_load_weights(weights)
return obj
def reset(self):
"""
Resets the model modules .
"""
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
def info(self, verbose=False):
"""
Logs model info
Args:
verbose (bool): Controls verbosity.
"""
if not self.model:
LOGGER.info("model not initialized!")
self.model.info(verbose=verbose)
def fuse(self):
if not self.model:
LOGGER.info("model not initialized!")
self.model.fuse()
@smart_inference_mode()
def predict(self, source, **kwargs):
"""
Visualize prediction.
Args:
source (str): Accepts all source types accepted by yolo
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in the docs
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
overrides["mode"] = "predict"
predictor = self.PredictorClass(overrides=overrides)
# check size type
sz = predictor.args.imgsz
if type(sz) != int: # received listConfig
predictor.args.imgsz = [sz[0], sz[0]] if len(sz) == 1 else [sz[0], sz[1]] # expand
else:
predictor.args.imgsz = [sz, sz]
predictor.setup(model=self.model, source=source)
predictor()
@smart_inference_mode()
def val(self, data=None, **kwargs):
"""
Validate a model on a given dataset
Args:
data (str): The dataset to validate on. Accepts all formats accepted by yolo
kwargs: Any other args accepted by the validators. To see all args check 'configuration' section in the docs
"""
if not self.model:
raise ModuleNotFoundError("model not initialized!")
overrides = self.overrides.copy()
overrides.update(kwargs)
overrides["mode"] = "val"
args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
args.data = data or args.data
args.task = self.task
validator = self.ValidatorClass(args=args)
validator(model=self.model)
@smart_inference_mode()
def export(self, **kwargs):
"""
Export model.
Args:
format (str): Export format
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in the docs
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
args.task = self.task
exporter = Exporter(overrides=overrides)
exporter(model=self.model)
def train(self, **kwargs):
"""
Trains the model on given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section.
You can pass all arguments as a yaml file in `cfg`. Other args are ignored if `cfg` file is passed
"""
if not self.model:
raise AttributeError("model not initialized. Use .new() or .load()")
overrides = kwargs
if kwargs.get("cfg"):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs["cfg"]))
overrides["task"] = self.task
overrides["mode"] = "train"
if not overrides.get("data"):
raise AttributeError("dataset not provided! Please define `data` in config.yaml or pass as an argument.")
self.trainer = self.TrainerClass(overrides=overrides)
self.trainer.model = self.trainer.load_model(weights=self.ckpt,
model_cfg=self.model.yaml if self.task != "classify" else None)
self.model = self.trainer.model # override here to save memory
self.trainer.train()
def resume(self, task=None, model=None):
"""
Resume a training task. Requires either `task` or `model`. `model` takes the higher precedence.
Args:
task (str): The task type you want to resume. Automatically finds the last run to resume if `model` is not specified.
model (str): The model checkpoint to resume from. If not found, the last run of the given task type is resumed.
If `model` is specified
"""
if task:
if task.lower() not in MODEL_MAP:
raise SyntaxError(f"unrecognised task - {task}. Supported tasks are {MODEL_MAP.keys()}")
else:
ckpt = torch.load(model, map_location="cpu")
task = ckpt["train_args"]["task"]
del ckpt
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._guess_ops_from_task(
task=task.lower())
self.trainer = self.TrainerClass(overrides={"task": task.lower(), "resume": model or True})
self.trainer.train()
@staticmethod
def _guess_task_from_head(head):
task = None
if head.lower() in ["classify", "classifier", "cls", "fc"]:
task = "classify"
if head.lower() in ["detect"]:
task = "detect"
if head.lower() in ["segment"]:
task = "segment"
if not task:
raise SyntaxError("task or model not recognized! Please refer the docs at : ") # TODO: add docs links
return task
def to(self, device):
self.model.to(device)
def _guess_ops_from_task(self, task):
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
# warning: eval is unsafe. Use with caution
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))
return model_class, trainer_class, validator_class, predictor_class
@smart_inference_mode()
def __call__(self, imgs):
if not self.model:
LOGGER.info("model not initialized!")
return self.model(imgs)
def forward(self, imgs):
return self.__call__(imgs)