You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
66 lines
2.4 KiB
66 lines
2.4 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
from copy import copy
|
|
|
|
from ultralytics.nn.tasks import SegmentationModel
|
|
from ultralytics.yolo import v8
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, RANK
|
|
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
|
|
|
|
|
# BaseTrainer python usage
|
|
class SegmentationTrainer(v8.detect.DetectionTrainer):
|
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
"""Initialize a SegmentationTrainer object with given arguments."""
|
|
if overrides is None:
|
|
overrides = {}
|
|
overrides['task'] = 'segment'
|
|
super().__init__(cfg, overrides, _callbacks)
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
|
"""Return SegmentationModel initialized with specified config and weights."""
|
|
model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
|
if weights:
|
|
model.load(weights)
|
|
|
|
return model
|
|
|
|
def get_validator(self):
|
|
"""Return an instance of SegmentationValidator for validation of YOLO model."""
|
|
self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss'
|
|
return v8.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
|
|
|
def plot_training_samples(self, batch, ni):
|
|
"""Creates a plot of training sample images with labels and box coordinates."""
|
|
plot_images(batch['img'],
|
|
batch['batch_idx'],
|
|
batch['cls'].squeeze(-1),
|
|
batch['bboxes'],
|
|
batch['masks'],
|
|
paths=batch['im_file'],
|
|
fname=self.save_dir / f'train_batch{ni}.jpg',
|
|
on_plot=self.on_plot)
|
|
|
|
def plot_metrics(self):
|
|
"""Plots training/val metrics."""
|
|
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png
|
|
|
|
|
|
def train(cfg=DEFAULT_CFG, use_python=False):
|
|
"""Train a YOLO segmentation model based on passed arguments."""
|
|
model = cfg.model or 'yolov8n-seg.pt'
|
|
data = cfg.data or 'coco128-seg.yaml' # or yolo.ClassificationDataset("mnist")
|
|
device = cfg.device if cfg.device is not None else ''
|
|
|
|
args = dict(model=model, data=data, device=device)
|
|
if use_python:
|
|
from ultralytics import YOLO
|
|
YOLO(model).train(**args)
|
|
else:
|
|
trainer = SegmentationTrainer(overrides=args)
|
|
trainer.train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
train()
|