You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

338 lines
11 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
from collections import abc
from itertools import repeat
from numbers import Number
from typing import List
import numpy as np
from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh
# From PyTorch internals
def _ntuple(n):
def parse(x):
return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))
return parse
to_4tuple = _ntuple(4)
# `xyxy` means left top and right bottom
# `xywh` means center x, center y and width, height(yolo format)
# `ltwh` means left top and width, height(coco format)
_formats = ['xyxy', 'xywh', 'ltwh']
__all__ = ['Bboxes']
class Bboxes:
"""Now only numpy is supported"""
def __init__(self, bboxes, format='xyxy') -> None:
assert format in _formats
bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
assert bboxes.ndim == 2
assert bboxes.shape[1] == 4
self.bboxes = bboxes
self.format = format
# self.normalized = normalized
# def convert(self, format):
# assert format in _formats
# if self.format == format:
# bboxes = self.bboxes
# elif self.format == "xyxy":
# if format == "xywh":
# bboxes = xyxy2xywh(self.bboxes)
# else:
# bboxes = xyxy2ltwh(self.bboxes)
# elif self.format == "xywh":
# if format == "xyxy":
# bboxes = xywh2xyxy(self.bboxes)
# else:
# bboxes = xywh2ltwh(self.bboxes)
# else:
# if format == "xyxy":
# bboxes = ltwh2xyxy(self.bboxes)
# else:
# bboxes = ltwh2xywh(self.bboxes)
#
# return Bboxes(bboxes, format)
def convert(self, format):
assert format in _formats
if self.format == format:
return
elif self.format == 'xyxy':
bboxes = xyxy2xywh(self.bboxes) if format == 'xywh' else xyxy2ltwh(self.bboxes)
elif self.format == 'xywh':
bboxes = xywh2xyxy(self.bboxes) if format == 'xyxy' else xywh2ltwh(self.bboxes)
else:
bboxes = ltwh2xyxy(self.bboxes) if format == 'xyxy' else ltwh2xywh(self.bboxes)
self.bboxes = bboxes
self.format = format
def areas(self):
self.convert('xyxy')
return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])
# def denormalize(self, w, h):
# if not self.normalized:
# return
# assert (self.bboxes <= 1.0).all()
# self.bboxes[:, 0::2] *= w
# self.bboxes[:, 1::2] *= h
# self.normalized = False
#
# def normalize(self, w, h):
# if self.normalized:
# return
# assert (self.bboxes > 1.0).any()
# self.bboxes[:, 0::2] /= w
# self.bboxes[:, 1::2] /= h
# self.normalized = True
def mul(self, scale):
"""
Args:
scale (tuple | List | int): the scale for four coords.
"""
if isinstance(scale, Number):
scale = to_4tuple(scale)
assert isinstance(scale, (tuple, list))
assert len(scale) == 4
self.bboxes[:, 0] *= scale[0]
self.bboxes[:, 1] *= scale[1]
self.bboxes[:, 2] *= scale[2]
self.bboxes[:, 3] *= scale[3]
def add(self, offset):
"""
Args:
offset (tuple | List | int): the offset for four coords.
"""
if isinstance(offset, Number):
offset = to_4tuple(offset)
assert isinstance(offset, (tuple, list))
assert len(offset) == 4
self.bboxes[:, 0] += offset[0]
self.bboxes[:, 1] += offset[1]
self.bboxes[:, 2] += offset[2]
self.bboxes[:, 3] += offset[3]
def __len__(self):
return len(self.bboxes)
@classmethod
def concatenate(cls, boxes_list: List['Bboxes'], axis=0) -> 'Bboxes':
"""
Concatenates a list of Boxes into a single Bboxes
Arguments:
boxes_list (list[Bboxes])
Returns:
Bboxes: the concatenated Boxes
"""
assert isinstance(boxes_list, (list, tuple))
if not boxes_list:
return cls(np.empty(0))
assert all(isinstance(box, Bboxes) for box in boxes_list)
if len(boxes_list) == 1:
return boxes_list[0]
return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))
def __getitem__(self, index) -> 'Bboxes':
"""
Args:
index: int, slice, or a BoolArray
Returns:
Bboxes: Create a new :class:`Bboxes` by indexing.
"""
if isinstance(index, int):
return Bboxes(self.bboxes[index].view(1, -1))
b = self.bboxes[index]
assert b.ndim == 2, f'Indexing on Bboxes with {index} failed to return a matrix!'
return Bboxes(b)
class Instances:
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None:
"""
Args:
bboxes (ndarray): bboxes with shape [N, 4].
segments (list | ndarray): segments.
keypoints (ndarray): keypoints with shape [N, 17, 2].
"""
if segments is None:
segments = []
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
self.keypoints = keypoints
self.normalized = normalized
if len(segments) > 0:
# list[np.array(1000, 2)] * num_samples
segments = resample_segments(segments)
# (N, 1000, 2)
segments = np.stack(segments, axis=0)
else:
segments = np.zeros((0, 1000, 2), dtype=np.float32)
self.segments = segments
def convert_bbox(self, format):
self._bboxes.convert(format=format)
def bbox_areas(self):
self._bboxes.areas()
def scale(self, scale_w, scale_h, bbox_only=False):
"""this might be similar with denormalize func but without normalized sign"""
self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
if bbox_only:
return
self.segments[..., 0] *= scale_w
self.segments[..., 1] *= scale_h
if self.keypoints is not None:
self.keypoints[..., 0] *= scale_w
self.keypoints[..., 1] *= scale_h
def denormalize(self, w, h):
if not self.normalized:
return
self._bboxes.mul(scale=(w, h, w, h))
self.segments[..., 0] *= w
self.segments[..., 1] *= h
if self.keypoints is not None:
self.keypoints[..., 0] *= w
self.keypoints[..., 1] *= h
self.normalized = False
def normalize(self, w, h):
if self.normalized:
return
self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
self.segments[..., 0] /= w
self.segments[..., 1] /= h
if self.keypoints is not None:
self.keypoints[..., 0] /= w
self.keypoints[..., 1] /= h
self.normalized = True
def add_padding(self, padw, padh):
# handle rect and mosaic situation
assert not self.normalized, 'you should add padding with absolute coordinates.'
self._bboxes.add(offset=(padw, padh, padw, padh))
self.segments[..., 0] += padw
self.segments[..., 1] += padh
if self.keypoints is not None:
self.keypoints[..., 0] += padw
self.keypoints[..., 1] += padh
def __getitem__(self, index) -> 'Instances':
"""
Args:
index: int, slice, or a BoolArray
Returns:
Instances: Create a new :class:`Instances` by indexing.
"""
segments = self.segments[index] if len(self.segments) else self.segments
keypoints = self.keypoints[index] if self.keypoints is not None else None
bboxes = self.bboxes[index]
bbox_format = self._bboxes.format
return Instances(
bboxes=bboxes,
segments=segments,
keypoints=keypoints,
bbox_format=bbox_format,
normalized=self.normalized,
)
def flipud(self, h):
if self._bboxes.format == 'xyxy':
y1 = self.bboxes[:, 1].copy()
y2 = self.bboxes[:, 3].copy()
self.bboxes[:, 1] = h - y2
self.bboxes[:, 3] = h - y1
else:
self.bboxes[:, 1] = h - self.bboxes[:, 1]
self.segments[..., 1] = h - self.segments[..., 1]
if self.keypoints is not None:
self.keypoints[..., 1] = h - self.keypoints[..., 1]
def fliplr(self, w):
if self._bboxes.format == 'xyxy':
x1 = self.bboxes[:, 0].copy()
x2 = self.bboxes[:, 2].copy()
self.bboxes[:, 0] = w - x2
self.bboxes[:, 2] = w - x1
else:
self.bboxes[:, 0] = w - self.bboxes[:, 0]
self.segments[..., 0] = w - self.segments[..., 0]
if self.keypoints is not None:
self.keypoints[..., 0] = w - self.keypoints[..., 0]
def clip(self, w, h):
ori_format = self._bboxes.format
self.convert_bbox(format='xyxy')
self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
if ori_format != 'xyxy':
self.convert_bbox(format=ori_format)
self.segments[..., 0] = self.segments[..., 0].clip(0, w)
self.segments[..., 1] = self.segments[..., 1].clip(0, h)
if self.keypoints is not None:
self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)
def update(self, bboxes, segments=None, keypoints=None):
new_bboxes = Bboxes(bboxes, format=self._bboxes.format)
self._bboxes = new_bboxes
if segments is not None:
self.segments = segments
if keypoints is not None:
self.keypoints = keypoints
def __len__(self):
return len(self.bboxes)
@classmethod
def concatenate(cls, instances_list: List['Instances'], axis=0) -> 'Instances':
"""
Concatenates a list of Boxes into a single Bboxes
Arguments:
instances_list (list[Bboxes])
axis
Returns:
Boxes: the concatenated Boxes
"""
assert isinstance(instances_list, (list, tuple))
if not instances_list:
return cls(np.empty(0))
assert all(isinstance(instance, Instances) for instance in instances_list)
if len(instances_list) == 1:
return instances_list[0]
use_keypoint = instances_list[0].keypoints is not None
bbox_format = instances_list[0]._bboxes.format
normalized = instances_list[0].normalized
cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)
@property
def bboxes(self):
return self._bboxes.bboxes