You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
5.3 KiB
115 lines
5.3 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
"""
|
|
Benchmark a YOLO model formats for speed and accuracy
|
|
|
|
Usage:
|
|
from ultralytics.yolo.utils.benchmarks import run_benchmarks
|
|
run_benchmarks(model='yolov8n.pt', imgsz=160)
|
|
|
|
Format | `format=argument` | Model
|
|
--- | --- | ---
|
|
PyTorch | - | yolov8n.pt
|
|
TorchScript | `torchscript` | yolov8n.torchscript
|
|
ONNX | `onnx` | yolov8n.onnx
|
|
OpenVINO | `openvino` | yolov8n_openvino_model/
|
|
TensorRT | `engine` | yolov8n.engine
|
|
CoreML | `coreml` | yolov8n.mlmodel
|
|
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
|
|
TensorFlow GraphDef | `pb` | yolov8n.pb
|
|
TensorFlow Lite | `tflite` | yolov8n.tflite
|
|
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
|
|
TensorFlow.js | `tfjs` | yolov8n_web_model/
|
|
PaddlePaddle | `paddle` | yolov8n_paddle_model/
|
|
"""
|
|
|
|
import platform
|
|
import time
|
|
from pathlib import Path
|
|
|
|
from ultralytics import YOLO
|
|
from ultralytics.yolo.engine.exporter import export_formats
|
|
from ultralytics.yolo.utils import LINUX, LOGGER, MACOS, ROOT, SETTINGS
|
|
from ultralytics.yolo.utils.checks import check_yolo
|
|
from ultralytics.yolo.utils.downloads import download
|
|
from ultralytics.yolo.utils.files import file_size
|
|
from ultralytics.yolo.utils.torch_utils import select_device
|
|
|
|
|
|
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', imgsz=160, half=False, device='cpu', hard_fail=False):
|
|
import pandas as pd
|
|
pd.options.display.max_columns = 10
|
|
pd.options.display.width = 120
|
|
device = select_device(device, verbose=False)
|
|
if isinstance(model, (str, Path)):
|
|
model = YOLO(model)
|
|
|
|
y = []
|
|
t0 = time.time()
|
|
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU)
|
|
emoji, filename = '❌', None # export defaults
|
|
try:
|
|
if model.task == 'classify':
|
|
assert i != 11, 'paddle cls exports coming soon'
|
|
assert i != 9 or LINUX, 'Edge TPU export only supported on Linux'
|
|
if i == 10:
|
|
assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux'
|
|
if 'cpu' in device.type:
|
|
assert cpu, 'inference not supported on CPU'
|
|
if 'cuda' in device.type:
|
|
assert gpu, 'inference not supported on GPU'
|
|
|
|
# Export
|
|
if format == '-':
|
|
filename = model.ckpt_path or model.cfg
|
|
export = model # PyTorch format
|
|
else:
|
|
filename = model.export(imgsz=imgsz, format=format, half=half, device=device) # all others
|
|
export = YOLO(filename, task=model.task)
|
|
assert suffix in str(filename), 'export failed'
|
|
emoji = '❎' # indicates export succeeded
|
|
|
|
# Predict
|
|
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
|
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
|
if not (ROOT / 'assets/bus.jpg').exists():
|
|
download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets')
|
|
export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half)
|
|
|
|
# Validate
|
|
if model.task == 'detect':
|
|
data, key = 'coco128.yaml', 'metrics/mAP50-95(B)'
|
|
elif model.task == 'segment':
|
|
data, key = 'coco128-seg.yaml', 'metrics/mAP50-95(M)'
|
|
elif model.task == 'classify':
|
|
data, key = 'imagenet100', 'metrics/accuracy_top5'
|
|
|
|
results = export.val(data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, verbose=False)
|
|
metric, speed = results.results_dict[key], results.speed['inference']
|
|
y.append([name, '✅', round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
|
|
except Exception as e:
|
|
if hard_fail:
|
|
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}'
|
|
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}')
|
|
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference
|
|
|
|
# Print results
|
|
check_yolo(device=device) # print system info
|
|
df = pd.DataFrame(y, columns=['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)'])
|
|
|
|
name = Path(model.ckpt_path).name
|
|
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n'
|
|
LOGGER.info(s)
|
|
with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f:
|
|
f.write(s)
|
|
|
|
if hard_fail and isinstance(hard_fail, float):
|
|
metrics = df[key].array # values to compare to floor
|
|
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
|
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}'
|
|
|
|
return df
|
|
|
|
|
|
if __name__ == '__main__':
|
|
benchmark()
|