You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

42 lines
1.6 KiB

from ultralytics.tracker import BYTETracker, BOTSORT
from ultralytics.yolo.utils.checks import check_requirements, check_yaml
from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load
import torch
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
check_requirements('lap') # for linear_assignment
def on_predict_start(predictor):
tracker = check_yaml(predictor.args.tracker)
cfg = IterableSimpleNamespace(**yaml_load(tracker))
assert cfg.tracker_type in ["bytetrack", "botsort"], \
f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'"
trackers = []
for _ in range(predictor.dataset.bs):
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
trackers.append(tracker)
predictor.trackers = trackers
def on_predict_postprocess_end(predictor):
bs = predictor.dataset.bs
im0s = predictor.batch[2]
im0s = im0s if isinstance(im0s, list) else [im0s]
for i in range(bs):
det = predictor.results[i].boxes.cpu().numpy()
if len(det) == 0:
continue
tracks = predictor.trackers[i].update(det, im0s[i])
if len(tracks) == 0:
continue
predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))
if predictor.results[i].masks is not None:
idx = tracks[:, -1].tolist()
predictor.results[i].masks = predictor.results[i].masks[idx]
def register_tracker(model):
model.add_callback("on_predict_start", on_predict_start)
model.add_callback("on_predict_postprocess_end", on_predict_postprocess_end)