You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

334 lines
12 KiB

"""
Simple training loop; Boilerplate that could apply to any arbitrary neural network,
"""
import os
import time
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import Dict, Union
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from omegaconf import DictConfig, OmegaConf
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
import ultralytics.yolo.utils as utils
import ultralytics.yolo.utils.loggers as loggers
from ultralytics.yolo.utils import LOGGER, ROOT
from ultralytics.yolo.utils.files import increment_path, save_yaml
from ultralytics.yolo.utils.modeling import get_model
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
class BaseTrainer:
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
self.console = LOGGER
self.args = self._get_config(config, overrides)
self.validator = None
self.model = None
self.callbacks = defaultdict(list)
self.console.info(f"Training config: \n args: \n {self.args}") # to debug
# Directories
self.save_dir = increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
self.wdir = self.save_dir / 'weights'
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt'
# Save run settings
save_yaml(self.save_dir / 'args.yaml', OmegaConf.to_container(self.args, resolve=True))
# device
self.device = utils.torch_utils.select_device(self.args.device, self.args.batch_size)
self.console.info(f"running on device {self.device}")
self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu')
# Model and Dataloaders.
self.trainset, self.testset = self.get_dataset(self.args.data)
if self.args.model is not None:
self.model = self.get_model(self.args.model, self.args.pretrained).to(self.device)
# epoch level metrics
self.metrics = {} # handle metrics returned by validator
self.best_fitness = None
self.fitness = None
self.loss = None
for callback, func in loggers.default_callbacks.items():
self.add_callback(callback, func)
def _get_config(self, config: Union[str, DictConfig], overrides: Union[str, Dict] = {}):
"""
Accepts yaml file name or DictConfig containing experiment configuration.
Returns training args namespace
:param config: Optional file name or DictConfig object
"""
if isinstance(config, (str, Path)):
config = OmegaConf.load(config)
elif isinstance(config, Dict):
config = OmegaConf.create(config)
# override
if isinstance(overrides, str):
overrides = OmegaConf.load(overrides)
elif isinstance(overrides, Dict):
overrides = OmegaConf.create(overrides)
return OmegaConf.merge(config, overrides)
def add_callback(self, onevent: str, callback):
"""
appends the given callback
"""
self.callbacks[onevent].append(callback)
def set_callback(self, onevent: str, callback):
"""
overrides the existing callbacks with the given callback
"""
self.callbacks[onevent] = [callback]
def trigger_callbacks(self, onevent: str):
for callback in self.callbacks.get(onevent, []):
callback(self)
def train(self):
world_size = torch.cuda.device_count()
if world_size > 1:
mp.spawn(self._do_train, args=(world_size,), nprocs=world_size, join=True)
else:
self._do_train(-1, 1)
def _setup_ddp(self, rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '9020'
torch.cuda.set_device(rank)
self.device = torch.device('cuda', rank)
print(f"RANK - WORLD_SIZE - DEVICE: {rank} - {world_size} - {self.device} ")
dist.init_process_group("nccl" if dist.is_nccl_available() else "gloo", rank=rank, world_size=world_size)
self.model = self.model.to(self.device)
self.model = DDP(self.model, device_ids=[rank])
self.args.batch_size = self.args.batch_size // world_size
def _setup_train(self, rank):
"""
Builds dataloaders and optimizer on correct rank process
"""
self.optimizer = build_optimizer(model=self.model,
name=self.args.optimizer,
lr=self.args.lr0,
momentum=self.args.momentum,
decay=self.args.weight_decay)
self.train_loader = self.get_dataloader(self.trainset, batch_size=self.args.batch_size, rank=rank)
if rank in {0, -1}:
print(" Creating testloader rank :", rank)
self.test_loader = self.get_dataloader(self.testset, batch_size=self.args.batch_size * 2, rank=rank)
self.validator = self.get_validator()
print("created testloader :", rank)
def _do_train(self, rank, world_size):
if world_size > 1:
self._setup_ddp(rank, world_size)
# callback hook. before_train
self._setup_train(rank)
self.epoch = 1
self.epoch_time = None
self.epoch_time_start = time.time()
self.train_time_start = time.time()
for epoch in range(self.args.epochs):
# callback hook. on_epoch_start
self.model.train()
pbar = enumerate(self.train_loader)
if rank in {-1, 0}:
pbar = tqdm(enumerate(self.train_loader),
total=len(self.train_loader),
bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
tloss = 0
for i, (images, labels) in pbar:
# callback hook. on_batch_start
# forward
images, labels = self.preprocess_batch(images, labels)
self.loss = self.criterion(self.model(images), labels)
tloss = (tloss * i + self.loss.item()) / (i + 1)
# backward
self.model.zero_grad(set_to_none=True)
self.scaler.scale(self.loss).backward()
# optimize
self.optimizer_step()
self.trigger_callbacks('on_batch_end')
# log
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
if rank in {-1, 0}:
pbar.desc = f"{f'{epoch + 1}/{self.args.epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
if rank in [-1, 0]:
# validation
# callback: on_val_start()
self.validate()
# callback: on_val_end()
# save model
if (not self.args.nosave) or (self.epoch + 1 == self.args.epochs):
self.save_model()
# callback; on_model_save
self.epoch += 1
tnow = time.time()
self.epoch_time = tnow - self.epoch_time_start
self.epoch_time_start = tnow
# TODO: termination condition
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours) \
\n{self.usage_help()}")
# callback; on_train_end
dist.destroy_process_group() if world_size != 1 else None
def save_model(self):
ckpt = {
'epoch': self.epoch,
'best_fitness': self.best_fitness,
'model': None, # deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
'ema': None, # deepcopy(ema.ema).half(),
'updates': None, # ema.updates,
'optimizer': None, # optimizer.state_dict(),
'train_args': self.args,
'date': datetime.now().isoformat()}
# Save last, best and delete
torch.save(ckpt, self.last)
if self.best_fitness == self.fitness:
torch.save(ckpt, self.best)
del ckpt
def get_dataloader(self, dataset_path, batch_size=16, rank=0):
"""
Returns dataloader derived from torch.data.Dataloader
"""
pass
def get_dataset(self, data):
"""
Download the dataset if needed and verify it.
Returns train and val split datasets
"""
pass
def get_model(self, model, pretrained):
"""
load/create/download model for any task
"""
model = get_model(model)
for m in model.modules():
if not pretrained and hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in model.parameters():
p.requires_grad = True
return model
def get_validator(self):
pass
def optimizer_step(self):
self.scaler.unscale_(self.optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
def preprocess_batch(self, images, labels):
"""
Allows custom preprocessing model inputs and ground truths depending on task type
"""
return images.to(self.device, non_blocking=True), labels.to(self.device)
def validate(self):
"""
Runs validation on test set using self.validator.
# TODO: discuss validator class. Enforce that a validator metrics dict should contain
"fitness" metric.
"""
self.metrics = self.validator(self)
self.fitness = self.metrics.get("fitness") or (-self.loss) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < self.fitness:
self.best_fitness = self.fitness
def build_targets(self, preds, targets):
pass
def criterion(self, preds, targets):
pass
def progress_string(self):
"""
Returns progress string depending on task type.
"""
pass
def usage_help(self):
"""
Returns usage functionality. gets printed to the console after training.
"""
pass
def log(self, text, rank=-1):
"""
Logs the given text to given ranks process if provided, otherwise logs to all ranks
:param text: text to log
:param rank: List[Int]
"""
if rank in {-1, 0}:
self.console.info(text)
def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
# TODO: 1. docstring with example? 2. Move this inside Trainer? or utils?
# YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
g = [], [], [] # optimizer parameter groups
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
for v in model.modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay)
g[2].append(v.bias)
if isinstance(v, bn): # weight (no decay)
g[1].append(v.weight)
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
g[0].append(v.weight)
if name == 'Adam':
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum
elif name == 'AdamW':
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == 'RMSProp':
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
elif name == 'SGD':
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
else:
raise NotImplementedError(f'Optimizer {name} not implemented.')
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
LOGGER.info(f"optimizer: {type(optimizer).__name__}(lr={lr}) with parameter groups "
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
return optimizer
# Dummy validator
def val(trainer: BaseTrainer):
trainer.console.info("validating")
return {"metric_1": 0.1, "metric_2": 0.2, "fitness": 1}