You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

110 lines
4.8 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
"""
Benchmark a YOLO model formats for speed and accuracy
Usage:
from ultralytics.yolo.utils.benchmarks import run_benchmarks
run_benchmarks(model='yolov8n.pt', imgsz=160)
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolov8n.pt
TorchScript | `torchscript` | yolov8n.torchscript
ONNX | `onnx` | yolov8n.onnx
OpenVINO | `openvino` | yolov8n_openvino_model/
TensorRT | `engine` | yolov8n.engine
CoreML | `coreml` | yolov8n.mlmodel
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
TensorFlow GraphDef | `pb` | yolov8n.pb
TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
"""
import platform
import time
from pathlib import Path
import pandas as pd
from ultralytics import YOLO
from ultralytics.yolo.engine.exporter import export_formats
from ultralytics.yolo.utils import LOGGER, ROOT, SETTINGS
from ultralytics.yolo.utils.checks import check_yolo
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.torch_utils import select_device
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', imgsz=160, half=False, device='cpu', hard_fail=0.30):
device = select_device(device, verbose=False)
if isinstance(model, (str, Path)):
model = YOLO(model)
y = []
t0 = time.time()
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU)
try:
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
assert i != 11 or model.task != 'classify', 'paddle-classify bug'
if 'cpu' in device.type:
assert cpu, 'inference not supported on CPU'
if 'cuda' in device.type:
assert gpu, 'inference not supported on GPU'
# Export
if format == '-':
filename = model.ckpt_path or model.cfg
export = model # PyTorch format
else:
filename = model.export(imgsz=imgsz, format=format, half=half, device=device) # all others
export = YOLO(filename)
assert suffix in str(filename), 'export failed'
# Predict
if not (ROOT / 'assets/bus.jpg').exists():
download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets')
export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half) # test
# Validate
if model.task == 'detect':
data, key = 'coco128.yaml', 'metrics/mAP50-95(B)'
elif model.task == 'segment':
data, key = 'coco128-seg.yaml', 'metrics/mAP50-95(M)'
elif model.task == 'classify':
data, key = 'imagenet100', 'metrics/accuracy_top5'
results = export.val(data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, verbose=False)
metric, speed = results.results_dict[key], results.speed['inference']
y.append([name, '', round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}'
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}')
y.append([name, '', None, None, None]) # mAP, t_inference
# Print results
check_yolo(device=device) # print system info
c = ['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)']
df = pd.DataFrame(y, columns=c)
name = Path(model.ckpt_path).name
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n'
LOGGER.info(s)
with open('benchmarks.log', 'a') as f:
f.write(s)
if hard_fail and isinstance(hard_fail, float):
metrics = df[key].array # values to compare to floor
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}'
return df
if __name__ == '__main__':
benchmark()