You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.8 KiB
150 lines
5.8 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
import argparse
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
from ultralytics import __version__, yolo
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, PREFIX, checks, print_settings, yaml_load
|
|
|
|
DIR = Path(__file__).parent
|
|
|
|
CLI_HELP_MSG = \
|
|
"""
|
|
YOLOv8 CLI Usage examples:
|
|
|
|
1. Install the ultralytics package:
|
|
|
|
pip install ultralytics
|
|
|
|
2. Train, Val, Predict and Export using 'yolo' commands of the form:
|
|
|
|
yolo TASK MODE ARGS
|
|
|
|
Where TASK (optional) is one of [detect, segment, classify]
|
|
MODE (required) is one of [train, val, predict, export]
|
|
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
|
For a full list of available ARGS see https://docs.ultralytics.com/config.
|
|
|
|
Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
|
|
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
|
|
|
|
Validate a pretrained detection model at batch-size 1 and image size 640:
|
|
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
|
|
|
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
|
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
|
|
|
|
3. Run special commands:
|
|
|
|
yolo help
|
|
yolo checks
|
|
yolo version
|
|
yolo settings
|
|
yolo copy-config
|
|
|
|
Docs: https://docs.ultralytics.com/cli
|
|
Community: https://community.ultralytics.com
|
|
GitHub: https://github.com/ultralytics/ultralytics
|
|
"""
|
|
|
|
|
|
def cli(cfg):
|
|
"""
|
|
Run a specified task and mode with the given configuration.
|
|
|
|
Args:
|
|
cfg (DictConfig): Configuration for the task and mode.
|
|
"""
|
|
# LOGGER.info(f"{colorstr(f'Ultralytics YOLO v{ultralytics.__version__}')}")
|
|
from ultralytics.yolo.configs import get_config
|
|
|
|
if cfg.cfg:
|
|
LOGGER.info(f"{PREFIX}Overriding default config with {cfg.cfg}")
|
|
cfg = get_config(cfg.cfg)
|
|
task, mode = cfg.task.lower(), cfg.mode.lower()
|
|
|
|
# Mapping from task to module
|
|
tasks = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}
|
|
module = tasks.get(task)
|
|
if not module:
|
|
raise SyntaxError(f"yolo task={task} is invalid. Valid tasks are: {', '.join(tasks.keys())}\n{CLI_HELP_MSG}")
|
|
|
|
# Mapping from mode to function
|
|
modes = {"train": module.train, "val": module.val, "predict": module.predict, "export": yolo.engine.exporter.export}
|
|
func = modes.get(mode)
|
|
if not func:
|
|
raise SyntaxError(f"yolo mode={mode} is invalid. Valid modes are: {', '.join(modes.keys())}\n{CLI_HELP_MSG}")
|
|
|
|
func(cfg)
|
|
|
|
|
|
def entrypoint():
|
|
"""
|
|
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed
|
|
to the package. It's a combination of argparse and hydra.
|
|
|
|
This function allows for:
|
|
- passing mandatory YOLO args as a list of strings
|
|
- specifying the task to be performed, either 'detect', 'segment' or 'classify'
|
|
- specifying the mode, either 'train', 'val', 'test', or 'predict'
|
|
- running special modes like 'checks'
|
|
- passing overrides to the package's configuration
|
|
|
|
It uses the package's default config and initializes it using the passed overrides.
|
|
Then it calls the CLI function with the composed config
|
|
"""
|
|
parser = argparse.ArgumentParser(description='YOLO parser')
|
|
parser.add_argument('args', type=str, nargs='+', help='YOLO args')
|
|
args = parser.parse_args().args
|
|
|
|
tasks = 'detect', 'segment', 'classify'
|
|
modes = 'train', 'val', 'predict', 'export'
|
|
special_modes = {
|
|
'help': lambda: LOGGER.info(CLI_HELP_MSG),
|
|
'checks': checks.check_yolo,
|
|
'version': lambda: LOGGER.info(__version__),
|
|
'settings': print_settings,
|
|
'copy-config': copy_default_config}
|
|
|
|
overrides = [] # basic overrides, i.e. imgsz=320
|
|
defaults = yaml_load(DEFAULT_CONFIG)
|
|
for a in args:
|
|
if '=' in a:
|
|
overrides.append(a)
|
|
elif a in tasks:
|
|
overrides.append(f'task={a}')
|
|
elif a in modes:
|
|
overrides.append(f'mode={a}')
|
|
elif a in special_modes:
|
|
special_modes[a]()
|
|
return
|
|
elif a in defaults and defaults[a] is False:
|
|
overrides.append(f'{a}=True') # auto-True for default False args, i.e. yolo show
|
|
elif a in defaults:
|
|
raise SyntaxError(f"'{a}' is a valid YOLO argument but is missing an '=' sign to set its value, "
|
|
f"i.e. try '{a}={defaults[a]}'"
|
|
f"\n{CLI_HELP_MSG}")
|
|
else:
|
|
raise SyntaxError(
|
|
f"'{a}' is not a valid YOLO argument. For a full list of valid arguments see "
|
|
f"https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml"
|
|
f"\n{CLI_HELP_MSG}")
|
|
|
|
from hydra import compose, initialize
|
|
|
|
with initialize(version_base=None, config_path=str(DEFAULT_CONFIG.parent.relative_to(DIR)), job_name="YOLO"):
|
|
cfg = compose(config_name=DEFAULT_CONFIG.name, overrides=overrides)
|
|
cli(cfg)
|
|
|
|
|
|
# Special modes --------------------------------------------------------------------------------------------------------
|
|
def copy_default_config():
|
|
new_file = Path.cwd() / DEFAULT_CONFIG.name.replace('.yaml', '_copy.yaml')
|
|
shutil.copy2(DEFAULT_CONFIG, new_file)
|
|
LOGGER.info(f"{PREFIX}{DEFAULT_CONFIG} copied to {new_file}\n"
|
|
f"Usage for running YOLO with this new custom config:\nyolo cfg={new_file} args...")
|