You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

116 lines
4.6 KiB

from pathlib import Path
import hydra
import torch
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ROOT, ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
from ..detect.predict import DetectionPredictor
class SegmentationPredictor(DetectionPredictor):
def postprocess(self, preds, img, orig_img):
masks = []
if len(preds) == 2: # eval
p, proto, = preds
else: # len(3) train
p, proto, _ = preds
# TODO: filter by classes
p = ops.non_max_suppression(p,
self.args.conf_thres,
self.args.iou_thres,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nm=32)
for i, pred in enumerate(p):
shape = orig_img[i].shape if self.webcam else orig_img.shape
if not len(pred):
continue
if self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
masks.append(ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2])) # HWC
else:
masks.append(ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
return (p, masks)
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
preds, masks = preds
det = preds[idx]
if len(det) == 0:
return log_string
# Segments
mask = masks[idx]
if self.args.save_txt:
segments = [
ops.scale_segments(im0.shape if self.arg.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
for x in reversed(ops.masks2segments(mask))]
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # add to string
# Mask plotting
self.annotator.masks(
mask,
colors=[colors(x, True) for x in det[:, 5]],
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /
255 if self.args.retina_masks else im[idx])
# Write results
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
if self.args.save_txt: # Write to file
seg = segments[j].reshape(-1) # (n,2) to (n*2)
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if self.save_img or self.args.save_crop or self.args.view_img:
c = int(cls) # integer class
label = None if self.args.hide_labels else (
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}')
self.annotator.box_label(xyxy, label, color=colors(c, True))
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
if self.args.save_crop:
imc = im0.copy()
save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] / f'{p.stem}.jpg', BGR=True)
return log_string
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "n.pt"
sz = cfg.imgsz
if type(sz) != int: # recieved listConfig
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
else:
cfg.imgsz = [sz, sz]
predictor = SegmentationPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()