You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

400 lines
16 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
from ultralytics.utils import LOGGER
class FastSAMPrompt:
def __init__(self, img_path, results, device='cuda') -> None:
# self.img_path = img_path
self.device = device
self.results = results
self.img_path = str(img_path)
self.ori_img = cv2.imread(self.img_path)
# Import and assign clip
try:
import clip # for linear_assignment
except ImportError:
from ultralytics.utils.checks import check_requirements
check_requirements('git+https://github.com/openai/CLIP.git') # required before installing lap from source
import clip
self.clip = clip
@staticmethod
def _segment_image(image, bbox):
image_array = np.array(image)
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
segmented_image = Image.fromarray(segmented_image_array)
black_image = Image.new('RGB', image.size, (255, 255, 255))
# transparency_mask = np.zeros_like((), dtype=np.uint8)
transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8)
transparency_mask[y1:y2, x1:x2] = 255
transparency_mask_image = Image.fromarray(transparency_mask, mode='L')
black_image.paste(segmented_image, mask=transparency_mask_image)
return black_image
@staticmethod
def _format_results(result, filter=0):
annotations = []
n = len(result.masks.data)
for i in range(n):
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation = {
'id': i,
'segmentation': mask.cpu().numpy(),
'bbox': result.boxes.data[i],
'score': result.boxes.conf[i]}
annotation['area'] = annotation['segmentation'].sum()
annotations.append(annotation)
return annotations
@staticmethod
def filter_masks(annotations): # filter the overlap mask
annotations.sort(key=lambda x: x['area'], reverse=True)
to_remove = set()
for i in range(len(annotations)):
a = annotations[i]
for j in range(i + 1, len(annotations)):
b = annotations[j]
if i != j and j not in to_remove and b['area'] < a['area'] and \
(a['segmentation'] & b['segmentation']).sum() / b['segmentation'].sum() > 0.8:
to_remove.add(j)
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
@staticmethod
def _get_bbox_from_mask(mask):
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x1, y1, w, h = cv2.boundingRect(contours[0])
x2, y2 = x1 + w, y1 + h
if len(contours) > 1:
for b in contours:
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
# 将多个bbox合并成一个
x1 = min(x1, x_t)
y1 = min(y1, y_t)
x2 = max(x2, x_t + w_t)
y2 = max(y2, y_t + h_t)
h = y2 - y1
w = x2 - x1
return [x1, y1, x2, y2]
def plot(self,
annotations,
output,
bbox=None,
points=None,
point_label=None,
mask_random_color=True,
better_quality=True,
retina=False,
withContours=True):
if isinstance(annotations[0], dict):
annotations = [annotation['segmentation'] for annotation in annotations]
result_name = os.path.basename(self.img_path)
image = self.ori_img
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_h = image.shape[0]
original_w = image.shape[1]
# for macOS only
# plt.switch_backend('TkAgg')
fig = plt.figure(figsize=(original_w / 100, original_h / 100))
# Add subplot with no margin.
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(image)
if better_quality:
if isinstance(annotations[0], torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
if self.device == 'cpu':
annotations = np.array(annotations)
self.fast_show_mask(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
pointlabel=point_label,
retinamask=retina,
target_height=original_h,
target_width=original_w,
)
else:
if isinstance(annotations[0], np.ndarray):
annotations = torch.from_numpy(annotations)
self.fast_show_mask_gpu(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
pointlabel=point_label,
retinamask=retina,
target_height=original_h,
target_width=original_w,
)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if withContours:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(annotations):
if isinstance(mask, dict):
mask = mask['segmentation']
annotation = mask.astype(np.uint8)
if not retina:
annotation = cv2.resize(
annotation,
(original_w, original_h),
interpolation=cv2.INTER_NEAREST,
)
contours, hierarchy = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour_all.extend(iter(contours))
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
plt.imshow(contour_mask)
save_path = Path(output) / result_name
save_path.parent.mkdir(exist_ok=True, parents=True)
plt.axis('off')
fig.savefig(save_path)
LOGGER.info(f'Saved to {save_path.absolute()}')
# CPU post process
def fast_show_mask(
self,
annotation,
ax,
random_color=False,
bbox=None,
points=None,
pointlabel=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
if random_color:
color = np.random.random((msak_sum, 1, 1, 3))
else:
color = np.ones((msak_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 1.0])
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
show = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
s=20,
c='y',
)
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
s=20,
c='m',
)
if not retinamask:
show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
ax.imshow(show)
def fast_show_mask_gpu(
self,
annotation,
ax,
random_color=False,
bbox=None,
points=None,
pointlabel=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# 找每个位置第一个非零值下标
index = (annotation != 0).to(torch.long).argmax(dim=0)
if random_color:
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
else:
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor([30 / 255, 144 / 255, 1.0]).to(
annotation.device)
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
visual = torch.cat([color, transparency], dim=-1)
mask_image = torch.unsqueeze(annotation, -1) * visual
# 按index取数index指每个位置选哪个batch的数把mask_image转成一个batch的形式
show = torch.zeros((height, weight, 4)).to(annotation.device)
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight), indexing='ij')
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
show_cpu = show.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
s=20,
c='y',
)
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
s=20,
c='m',
)
if not retinamask:
show_cpu = cv2.resize(show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
ax.imshow(show_cpu)
# clip
@torch.no_grad()
def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:
preprocessed_images = [preprocess(image).to(device) for image in elements]
tokenized_text = self.clip.tokenize([search_text]).to(device)
stacked_images = torch.stack(preprocessed_images)
image_features = model.encode_image(stacked_images)
text_features = model.encode_text(tokenized_text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
probs = 100.0 * image_features @ text_features.T
return probs[:, 0].softmax(dim=0)
def _crop_image(self, format_results):
image = Image.fromarray(cv2.cvtColor(self.ori_img, cv2.COLOR_BGR2RGB))
ori_w, ori_h = image.size
annotations = format_results
mask_h, mask_w = annotations[0]['segmentation'].shape
if ori_w != mask_w or ori_h != mask_h:
image = image.resize((mask_w, mask_h))
cropped_boxes = []
cropped_images = []
not_crop = []
filter_id = []
# annotations, _ = filter_masks(annotations)
# filter_id = list(_)
for _, mask in enumerate(annotations):
if np.sum(mask['segmentation']) <= 100:
filter_id.append(_)
continue
bbox = self._get_bbox_from_mask(mask['segmentation']) # mask 的 bbox
cropped_boxes.append(self._segment_image(image, bbox)) # 保存裁剪的图片
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
cropped_images.append(bbox) # 保存裁剪的图片的bbox
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
def box_prompt(self, bbox):
assert (bbox[2] != 0 and bbox[3] != 0)
masks = self.results[0].masks.data
target_height = self.ori_img.shape[0]
target_width = self.ori_img.shape[1]
h = masks.shape[1]
w = masks.shape[2]
if h != target_height or w != target_width:
bbox = [
int(bbox[0] * w / target_width),
int(bbox[1] * h / target_height),
int(bbox[2] * w / target_width),
int(bbox[3] * h / target_height), ]
bbox[0] = max(round(bbox[0]), 0)
bbox[1] = max(round(bbox[1]), 0)
bbox[2] = min(round(bbox[2]), w)
bbox[3] = min(round(bbox[3]), h)
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2))
orig_masks_area = torch.sum(masks, dim=(1, 2))
union = bbox_area + orig_masks_area - masks_area
IoUs = masks_area / union
max_iou_index = torch.argmax(IoUs)
return np.array([masks[max_iou_index].cpu().numpy()])
def point_prompt(self, points, pointlabel): # numpy 处理
masks = self._format_results(self.results[0], 0)
target_height = self.ori_img.shape[0]
target_width = self.ori_img.shape[1]
h = masks[0]['segmentation'].shape[0]
w = masks[0]['segmentation'].shape[1]
if h != target_height or w != target_width:
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
onemask = np.zeros((h, w))
for i, annotation in enumerate(masks):
mask = annotation['segmentation'] if isinstance(annotation, dict) else annotation
for i, point in enumerate(points):
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
onemask += mask
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
onemask -= mask
onemask = onemask >= 1
return np.array([onemask])
def text_prompt(self, text):
format_results = self._format_results(self.results[0], 0)
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device)
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)
max_idx = scores.argsort()
max_idx = max_idx[-1]
max_idx += sum(np.array(filter_id) <= int(max_idx))
return np.array([annotations[max_idx]['segmentation']])
def everything_prompt(self):
return self.results[0].masks.data