You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

186 lines
11 KiB

---
comments: true
description: Learn how to use instance segmentation models with Ultralytics YOLO. Instructions on training, validation, image prediction, and model export.
keywords: yolov8, instance segmentation, Ultralytics, COCO dataset, image segmentation, object detection, model training, model validation, image prediction, model export
---
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image
and segmenting them from the rest of the image.
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418644-7df320b8-098d-47f1-85c5-26604d761286.png">
The output of an instance segmentation model is a set of masks or
contours that outline each object in the image, along with class labels and confidence scores for each object. Instance
segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.
!!! tip "Tip"
YOLOv8 Segment models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on
the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify
models are pretrained on
the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|----------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
<br>Reproduce by `yolo val segment data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
instance.
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
## Train
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available
arguments see the [Configuration](../usage/cfg.md) page.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.yaml') # build a new model from YAML
model = YOLO('yolov8n-seg.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Build a new model from YAML and start training from scratch
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
# Start training from a pretrained *.pt model
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
```
### Dataset format
YOLO segmentation dataset format can be found in detail in the [Dataset Guide](../datasets/segment/index.md). To convert your existing dataset from other formats( like COCO etc.) to YOLO format, please use [json2yolo tool](https://github.com/ultralytics/JSON2YOLO) by Ultralytics.
## Val
Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the `model`
retains it's training `data` and arguments as model attributes.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95(B)
metrics.box.map50 # map50(B)
metrics.box.map75 # map75(B)
metrics.box.maps # a list contains map50-95(B) of each category
metrics.seg.map # map50-95(M)
metrics.seg.map50 # map50(M)
metrics.seg.map75 # map75(M)
metrics.seg.maps # a list contains map50-95(M) of each category
```
=== "CLI"
```bash
yolo segment val model=yolov8n-seg.pt # val official model
yolo segment val model=path/to/best.pt # val custom model
```
## Predict
Use a trained YOLOv8n-seg model to run predictions on images.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
```
=== "CLI"
```bash
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
## Export
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained
# Export the model
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-seg.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
Available YOLOv8-seg export formats are in the table below. You can predict or validate directly on exported models,
i.e. `yolo predict model=yolov8n-seg.onnx`. Usage examples are shown for your model after export completes.
| Format | `format` Argument | Model | Metadata | Arguments |
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ | - |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ | `imgsz`, `optimize` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ | `imgsz`, `half` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ | `imgsz`, `keras` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ | `imgsz` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ | `imgsz`, `half`, `int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ | `imgsz` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-seg_ncnn_model/` | ✅ | `imgsz`, `half` |
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.