You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
8.6 KiB
222 lines
8.6 KiB
import json
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from omegaconf import OmegaConf # noqa
|
|
from tqdm import tqdm
|
|
|
|
from ultralytics.nn.autobackend import AutoBackend
|
|
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks
|
|
from ultralytics.yolo.utils.checks import check_imgsz
|
|
from ultralytics.yolo.utils.files import increment_path
|
|
from ultralytics.yolo.utils.ops import Profile
|
|
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device, smart_inference_mode
|
|
|
|
|
|
class BaseValidator:
|
|
"""
|
|
BaseValidator
|
|
|
|
A base class for creating validators.
|
|
|
|
Attributes:
|
|
dataloader (DataLoader): Dataloader to use for validation.
|
|
pbar (tqdm): Progress bar to update during validation.
|
|
logger (logging.Logger): Logger to use for validation.
|
|
args (OmegaConf): Configuration for the validator.
|
|
model (nn.Module): Model to validate.
|
|
data (dict): Data dictionary.
|
|
device (torch.device): Device to use for validation.
|
|
batch_i (int): Current batch index.
|
|
training (bool): Whether the model is in training mode.
|
|
speed (float): Batch processing speed in seconds.
|
|
jdict (dict): Dictionary to store validation results.
|
|
save_dir (Path): Directory to save results.
|
|
"""
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
|
|
"""
|
|
Initializes a BaseValidator instance.
|
|
|
|
Args:
|
|
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
|
|
save_dir (Path): Directory to save results.
|
|
pbar (tqdm.tqdm): Progress bar for displaying progress.
|
|
logger (logging.Logger): Logger to log messages.
|
|
args (OmegaConf): Configuration for the validator.
|
|
"""
|
|
self.dataloader = dataloader
|
|
self.pbar = pbar
|
|
self.logger = logger or LOGGER
|
|
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
|
|
self.model = None
|
|
self.data = None
|
|
self.device = None
|
|
self.batch_i = None
|
|
self.training = True
|
|
self.speed = None
|
|
self.jdict = None
|
|
|
|
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
|
|
name = self.args.name or f"{self.args.mode}"
|
|
self.save_dir = save_dir or increment_path(Path(project) / name,
|
|
exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
|
|
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
if self.args.conf is None:
|
|
self.args.conf = 0.001 # default conf=0.001
|
|
|
|
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
|
|
|
@smart_inference_mode()
|
|
def __call__(self, trainer=None, model=None):
|
|
"""
|
|
Supports validation of a pre-trained model if passed or a model being trained
|
|
if trainer is passed (trainer gets priority).
|
|
"""
|
|
self.training = trainer is not None
|
|
if self.training:
|
|
self.device = trainer.device
|
|
self.data = trainer.data
|
|
model = trainer.ema.ema or trainer.model
|
|
self.args.half = self.device.type != 'cpu' # force FP16 val during training
|
|
model = model.half() if self.args.half else model.float()
|
|
self.model = model
|
|
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
|
|
self.args.plots = trainer.epoch == trainer.epochs - 1 # always plot final epoch
|
|
else:
|
|
callbacks.add_integration_callbacks(self)
|
|
self.run_callbacks('on_val_start')
|
|
assert model is not None, "Either trainer or model is needed for validation"
|
|
self.device = select_device(self.args.device, self.args.batch)
|
|
self.args.half &= self.device.type != 'cpu'
|
|
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half)
|
|
self.model = model
|
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
|
imgsz = check_imgsz(self.args.imgsz, stride=stride)
|
|
if engine:
|
|
self.args.batch = model.batch_size
|
|
else:
|
|
self.device = model.device
|
|
if not pt and not jit:
|
|
self.args.batch = 1 # export.py models default to batch-size 1
|
|
self.logger.info(
|
|
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
|
|
|
if isinstance(self.args.data, str) and self.args.data.endswith(".yaml"):
|
|
data = check_dataset_yaml(self.args.data)
|
|
else:
|
|
data = check_dataset(self.args.data)
|
|
|
|
if self.device.type == 'cpu':
|
|
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
|
|
self.dataloader = self.dataloader or \
|
|
self.get_dataloader(data.get("val") or data.set("test"), self.args.batch)
|
|
self.data = data
|
|
|
|
model.eval()
|
|
|
|
dt = Profile(), Profile(), Profile(), Profile()
|
|
n_batches = len(self.dataloader)
|
|
desc = self.get_desc()
|
|
# NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training,
|
|
# which may affect classification task since this arg is in yolov5/classify/val.py.
|
|
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
|
|
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
|
|
self.init_metrics(de_parallel(model))
|
|
self.jdict = [] # empty before each val
|
|
for batch_i, batch in enumerate(bar):
|
|
self.run_callbacks('on_val_batch_start')
|
|
self.batch_i = batch_i
|
|
# pre-process
|
|
with dt[0]:
|
|
batch = self.preprocess(batch)
|
|
|
|
# inference
|
|
with dt[1]:
|
|
preds = model(batch["img"])
|
|
|
|
# loss
|
|
with dt[2]:
|
|
if self.training:
|
|
self.loss += trainer.criterion(preds, batch)[1]
|
|
|
|
# pre-process predictions
|
|
with dt[3]:
|
|
preds = self.postprocess(preds)
|
|
|
|
self.update_metrics(preds, batch)
|
|
if self.args.plots and batch_i < 3:
|
|
self.plot_val_samples(batch, batch_i)
|
|
self.plot_predictions(batch, preds, batch_i)
|
|
|
|
self.run_callbacks('on_val_batch_end')
|
|
stats = self.get_stats()
|
|
self.check_stats(stats)
|
|
self.print_results()
|
|
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
|
|
self.run_callbacks('on_val_end')
|
|
if self.training:
|
|
model.float()
|
|
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
|
|
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
|
|
else:
|
|
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' %
|
|
self.speed)
|
|
if self.args.save_json and self.jdict:
|
|
with open(str(self.save_dir / "predictions.json"), 'w') as f:
|
|
self.logger.info(f"Saving {f.name}...")
|
|
json.dump(self.jdict, f) # flatten and save
|
|
stats = self.eval_json(stats) # update stats
|
|
return stats
|
|
|
|
def run_callbacks(self, event: str):
|
|
for callback in self.callbacks.get(event, []):
|
|
callback(self)
|
|
|
|
def get_dataloader(self, dataset_path, batch_size):
|
|
raise NotImplementedError("get_dataloader function not implemented for this validator")
|
|
|
|
def preprocess(self, batch):
|
|
return batch
|
|
|
|
def postprocess(self, preds):
|
|
return preds
|
|
|
|
def init_metrics(self, model):
|
|
pass
|
|
|
|
def update_metrics(self, preds, batch):
|
|
pass
|
|
|
|
def get_stats(self):
|
|
return {}
|
|
|
|
def check_stats(self, stats):
|
|
pass
|
|
|
|
def print_results(self):
|
|
pass
|
|
|
|
def get_desc(self):
|
|
pass
|
|
|
|
@property
|
|
def metric_keys(self):
|
|
return []
|
|
|
|
# TODO: may need to put these following functions into callback
|
|
def plot_val_samples(self, batch, ni):
|
|
pass
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
pass
|
|
|
|
def pred_to_json(self, preds, batch):
|
|
pass
|
|
|
|
def eval_json(self, stats):
|
|
pass
|