You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
6.0 KiB
145 lines
6.0 KiB
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image
|
|
and segmenting them from the rest of the image.
|
|
|
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
|
|
|
The output of an instance segmentation model is a set of masks or
|
|
contours that outline each object in the image, along with class labels and confidence scores for each object. Instance
|
|
segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.
|
|
|
|
!!! tip "Tip"
|
|
|
|
YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO.
|
|
|
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8/seg){.md-button .md-button--primary}
|
|
|
|
## Train
|
|
|
|
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available
|
|
arguments see the [Configuration](../cfg.md) page.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-seg.yaml") # build a new model from scratch
|
|
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
|
|
|
|
# Train the model
|
|
model.train(data="coco128-seg.yaml", epochs=100, imgsz=640)
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
|
```
|
|
|
|
## Val
|
|
|
|
Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the `model`
|
|
retains it's training `data` and arguments as model attributes.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-seg.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
# Validate the model
|
|
metrics = model.val() # no arguments needed, dataset and settings remembered
|
|
metrics.box.map # map50-95(B)
|
|
metrics.box.map50 # map50(B)
|
|
metrics.box.map75 # map75(B)
|
|
metrics.box.maps # a list contains map50-95(B) of each category
|
|
metrics.seg.map # map50-95(M)
|
|
metrics.seg.map50 # map50(M)
|
|
metrics.seg.map75 # map75(M)
|
|
metrics.seg.maps # a list contains map50-95(M) of each category
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo segment val model=yolov8n-seg.pt # val official model
|
|
yolo segment val model=path/to/best.pt # val custom model
|
|
```
|
|
|
|
## Predict
|
|
|
|
Use a trained YOLOv8n-seg model to run predictions on images.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-seg.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
# Predict with the model
|
|
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo segment predict model=yolov8n-seg.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
|
yolo segment predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
|
```
|
|
|
|
Read more details of `predict` in our [Predict](https://docs.ultralytics.com/predict/) page.
|
|
|
|
## Export
|
|
|
|
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-seg.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom trained
|
|
|
|
# Export the model
|
|
model.export(format="onnx")
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo export model=yolov8n-seg.pt format=onnx # export official model
|
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
|
```
|
|
|
|
Available YOLOv8-seg export formats include:
|
|
|
|
| Format | `format=` | Model | Metadata |
|
|
|--------------------------------------------------------------------|---------------|-------------------------------|----------|
|
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ |
|
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ |
|
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ |
|
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ |
|
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ |
|
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlmodel` | ✅ |
|
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ |
|
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ |
|
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ |
|
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ |
|
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ |
|
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ |
|
|
|
|
|