You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
7.2 KiB
174 lines
7.2 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
"""
|
|
RT-DETR model interface
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
import torch.nn as nn
|
|
|
|
from ultralytics.nn.tasks import RTDETRDetectionModel, attempt_load_one_weight, yaml_model_load
|
|
from ultralytics.yolo.cfg import get_cfg
|
|
from ultralytics.yolo.engine.exporter import Exporter
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, RANK, ROOT, is_git_dir
|
|
from ultralytics.yolo.utils.checks import check_imgsz
|
|
from ultralytics.yolo.utils.torch_utils import model_info, smart_inference_mode
|
|
|
|
from .predict import RTDETRPredictor
|
|
from .train import RTDETRTrainer
|
|
from .val import RTDETRValidator
|
|
|
|
|
|
class RTDETR:
|
|
|
|
def __init__(self, model='rtdetr-l.pt') -> None:
|
|
if model and not model.endswith('.pt') and not model.endswith('.yaml'):
|
|
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.')
|
|
# Load or create new YOLO model
|
|
self.predictor = None
|
|
self.ckpt = None
|
|
suffix = Path(model).suffix
|
|
if suffix == '.yaml':
|
|
self._new(model)
|
|
else:
|
|
self._load(model)
|
|
|
|
def _new(self, cfg: str, verbose=True):
|
|
cfg_dict = yaml_model_load(cfg)
|
|
self.cfg = cfg
|
|
self.task = 'detect'
|
|
self.model = RTDETRDetectionModel(cfg_dict, verbose=verbose) # build model
|
|
|
|
# Below added to allow export from YAMLs
|
|
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
|
self.model.task = self.task
|
|
|
|
@smart_inference_mode()
|
|
def _load(self, weights: str):
|
|
self.model, self.ckpt = attempt_load_one_weight(weights)
|
|
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
|
self.task = self.model.args['task']
|
|
|
|
@smart_inference_mode()
|
|
def load(self, weights='yolov8n.pt'):
|
|
"""
|
|
Transfers parameters with matching names and shapes from 'weights' to model.
|
|
"""
|
|
if isinstance(weights, (str, Path)):
|
|
weights, self.ckpt = attempt_load_one_weight(weights)
|
|
self.model.load(weights)
|
|
return self
|
|
|
|
@smart_inference_mode()
|
|
def predict(self, source=None, stream=False, **kwargs):
|
|
"""
|
|
Perform prediction using the YOLO model.
|
|
|
|
Args:
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
|
Accepts all source types accepted by the YOLO model.
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
|
**kwargs : Additional keyword arguments passed to the predictor.
|
|
Check the 'configuration' section in the documentation for all available options.
|
|
|
|
Returns:
|
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
|
"""
|
|
if source is None:
|
|
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
|
overrides = dict(conf=0.25, task='detect', mode='predict')
|
|
overrides.update(kwargs) # prefer kwargs
|
|
if not self.predictor:
|
|
self.predictor = RTDETRPredictor(overrides=overrides)
|
|
self.predictor.setup_model(model=self.model)
|
|
else: # only update args if predictor is already setup
|
|
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
|
return self.predictor(source, stream=stream)
|
|
|
|
def train(self, **kwargs):
|
|
"""
|
|
Trains the model on a given dataset.
|
|
|
|
Args:
|
|
**kwargs (Any): Any number of arguments representing the training configuration.
|
|
"""
|
|
overrides = dict(task='detect', mode='train')
|
|
overrides.update(kwargs)
|
|
overrides['deterministic'] = False
|
|
if not overrides.get('data'):
|
|
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
|
|
if overrides.get('resume'):
|
|
overrides['resume'] = self.ckpt_path
|
|
self.task = overrides.get('task') or self.task
|
|
self.trainer = RTDETRTrainer(overrides=overrides)
|
|
if not overrides.get('resume'): # manually set model only if not resuming
|
|
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
|
self.model = self.trainer.model
|
|
self.trainer.train()
|
|
# Update model and cfg after training
|
|
if RANK in (-1, 0):
|
|
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
|
|
self.overrides = self.model.args
|
|
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
|
|
|
|
def val(self, **kwargs):
|
|
"""Run validation given dataset."""
|
|
overrides = dict(task='detect', mode='val')
|
|
overrides.update(kwargs) # prefer kwargs
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
|
validator = RTDETRValidator(args=args)
|
|
validator(model=self.model)
|
|
self.metrics = validator.metrics
|
|
return validator.metrics
|
|
|
|
def info(self, verbose=True):
|
|
"""Get model info"""
|
|
return model_info(self.model, verbose=verbose)
|
|
|
|
def _check_is_pytorch_model(self):
|
|
"""
|
|
Raises TypeError is model is not a PyTorch model
|
|
"""
|
|
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
|
|
pt_module = isinstance(self.model, nn.Module)
|
|
if not (pt_module or pt_str):
|
|
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
|
|
f'PyTorch models can be used to train, val, predict and export, i.e. '
|
|
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
|
|
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
|
|
|
|
def fuse(self):
|
|
"""Fuse PyTorch Conv2d and BatchNorm2d layers."""
|
|
self._check_is_pytorch_model()
|
|
self.model.fuse()
|
|
|
|
@smart_inference_mode()
|
|
def export(self, **kwargs):
|
|
"""
|
|
Export model.
|
|
|
|
Args:
|
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
|
"""
|
|
overrides = dict(task='detect')
|
|
overrides.update(kwargs)
|
|
overrides['mode'] = 'export'
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
args.task = self.task
|
|
if args.imgsz == DEFAULT_CFG.imgsz:
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
|
if args.batch == DEFAULT_CFG.batch:
|
|
args.batch = 1 # default to 1 if not modified
|
|
return Exporter(overrides=args)(model=self.model)
|
|
|
|
def __call__(self, source=None, stream=False, **kwargs):
|
|
"""Calls the 'predict' function with given arguments to perform object detection."""
|
|
return self.predict(source, stream, **kwargs)
|
|
|
|
def __getattr__(self, attr):
|
|
"""Raises error if object has no requested attribute."""
|
|
name = self.__class__.__name__
|
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|