You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
8.2 KiB

import json
from collections import defaultdict
from pathlib import Path
import torch
from omegaconf import OmegaConf # noqa
from tqdm import tqdm
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, callbacks
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device, smart_inference_mode
class BaseValidator:
"""
BaseValidator
A base class for creating validators.
Attributes:
dataloader (DataLoader): Dataloader to use for validation.
pbar (tqdm): Progress bar to update during validation.
logger (logging.Logger): Logger to use for validation.
args (OmegaConf): Configuration for the validator.
model (nn.Module): Model to validate.
data (dict): Data dictionary.
device (torch.device): Device to use for validation.
batch_i (int): Current batch index.
training (bool): Whether the model is in training mode.
speed (float): Batch processing speed in seconds.
jdict (dict): Dictionary to store validation results.
save_dir (Path): Directory to save results.
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
"""
Initializes a BaseValidator instance.
Args:
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
save_dir (Path): Directory to save results.
pbar (tqdm.tqdm): Progress bar for displaying progress.
logger (logging.Logger): Logger to log messages.
args (OmegaConf): Configuration for the validator.
"""
self.dataloader = dataloader
self.pbar = pbar
self.logger = logger or LOGGER
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
self.model = None
self.data = None
self.device = None
self.batch_i = None
self.training = True
self.speed = None
self.jdict = None
project = self.args.project or f"runs/{self.args.task}"
name = self.args.name or f"{self.args.mode}"
self.save_dir = save_dir or increment_path(Path(project) / name,
exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.training = trainer is not None
if self.training:
self.device = trainer.device
self.data = trainer.data
model = trainer.ema.ema or trainer.model
self.args.half &= self.device.type != 'cpu'
model = model.half() if self.args.half else model.float()
self.model = model
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
self.args.plots = trainer.epoch == trainer.epochs - 1 # always plot final epoch
else:
callbacks.add_integration_callbacks(self)
self.run_callbacks('on_val_start')
assert model is not None, "Either trainer or model is needed for validation"
self.device = select_device(self.args.device, self.args.batch_size)
self.args.half &= self.device.type != 'cpu'
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half)
self.model = model
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_imgsz(self.args.imgsz, stride=stride)
if engine:
self.args.batch_size = model.batch_size
else:
self.device = model.device
if not pt and not jit:
self.args.batch_size = 1 # export.py models default to batch-size 1
self.logger.info(
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
if isinstance(self.args.data, str) and self.args.data.endswith(".yaml"):
data = check_dataset_yaml(self.args.data)
else:
data = check_dataset(self.args.data)
self.dataloader = self.dataloader or \
self.get_dataloader(data.get("val") or data.set("test"), self.args.batch_size)
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
n_batches = len(self.dataloader)
desc = self.get_desc()
# NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training,
# which may affect classification task since this arg is in yolov5/classify/val.py.
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.run_callbacks('on_val_batch_start')
self.batch_i = batch_i
# pre-process
with dt[0]:
batch = self.preprocess(batch)
# inference
with dt[1]:
preds = model(batch["img"])
# loss
with dt[2]:
if self.training:
self.loss += trainer.criterion(preds, batch)[1]
# pre-process predictions
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
self.run_callbacks('on_val_batch_end')
stats = self.get_stats()
self.check_stats(stats)
self.print_results()
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
self.run_callbacks('on_val_end')
if self.training:
model.float()
return {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
else:
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' %
self.speed)
if self.args.save_json and self.jdict:
with open(str(self.save_dir / "predictions.json"), 'w') as f:
self.logger.info(f"Saving {f.name}...")
json.dump(self.jdict, f) # flatten and save
stats = self.eval_json(stats) # update stats
return stats
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)
def get_dataloader(self, dataset_path, batch_size):
raise NotImplementedError("get_dataloader function not implemented for this validator")
def preprocess(self, batch):
return batch
def postprocess(self, preds):
return preds
def init_metrics(self, model):
pass
def update_metrics(self, preds, batch):
pass
def get_stats(self):
return {}
def check_stats(self, stats):
pass
def print_results(self):
pass
def get_desc(self):
pass
@property
def metric_keys(self):
return []
# TODO: may need to put these following functions into callback
def plot_val_samples(self, batch, ni):
pass
def plot_predictions(self, batch, preds, ni):
pass
def pred_to_json(self, preds, batch):
pass
def eval_json(self, stats):
pass