You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

47 lines
1.5 KiB

from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
try:
import wandb
assert hasattr(wandb, '__version__')
except (ImportError, AssertionError):
wandb = None
def on_pretrain_routine_start(trainer):
wandb.init(project=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8',
name=trainer.args.name,
config=dict(trainer.args)) if not wandb.run else wandb.run
def on_val_end(trainer):
wandb.run.log(trainer.metrics, step=trainer.epoch + 1)
if trainer.epoch == 0:
model_info = {
"model/parameters": get_num_params(trainer.model),
"model/GFLOPs": round(get_flops(trainer.model), 1),
"model/speed(ms)": round(trainer.validator.speed[1], 1)}
wandb.run.log(model_info, step=trainer.epoch + 1)
def on_train_epoch_end(trainer):
wandb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
if trainer.epoch == 1:
wandb.run.log({f.stem: wandb.Image(str(f))
for f in trainer.save_dir.glob('train_batch*.jpg')},
step=trainer.epoch + 1)
def on_train_end(trainer):
art = wandb.Artifact(type="model", name=f"run_{wandb.run.id}_model")
if trainer.best.exists():
art.add_file(trainer.best)
wandb.run.log_artifact(art)
callbacks = {
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_epoch_end": on_train_epoch_end,
"on_val_end": on_val_end,
"on_train_end": on_train_end} if wandb else {}