You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
4.6 KiB
111 lines
4.6 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import torch
|
|
|
|
from ultralytics.data import ClassificationDataset, build_dataloader
|
|
from ultralytics.engine.validator import BaseValidator
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER
|
|
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix
|
|
from ultralytics.utils.plotting import plot_images
|
|
|
|
|
|
class ClassificationValidator(BaseValidator):
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
|
"""Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar."""
|
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
|
self.args.task = 'classify'
|
|
self.metrics = ClassifyMetrics()
|
|
|
|
def get_desc(self):
|
|
"""Returns a formatted string summarizing classification metrics."""
|
|
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc')
|
|
|
|
def init_metrics(self, model):
|
|
"""Initialize confusion matrix, class names, and top-1 and top-5 accuracy."""
|
|
self.names = model.names
|
|
self.nc = len(model.names)
|
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc, task='classify')
|
|
self.pred = []
|
|
self.targets = []
|
|
|
|
def preprocess(self, batch):
|
|
"""Preprocesses input batch and returns it."""
|
|
batch['img'] = batch['img'].to(self.device, non_blocking=True)
|
|
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float()
|
|
batch['cls'] = batch['cls'].to(self.device)
|
|
return batch
|
|
|
|
def update_metrics(self, preds, batch):
|
|
"""Updates running metrics with model predictions and batch targets."""
|
|
n5 = min(len(self.model.names), 5)
|
|
self.pred.append(preds.argsort(1, descending=True)[:, :n5])
|
|
self.targets.append(batch['cls'])
|
|
|
|
def finalize_metrics(self, *args, **kwargs):
|
|
"""Finalizes metrics of the model such as confusion_matrix and speed."""
|
|
self.confusion_matrix.process_cls_preds(self.pred, self.targets)
|
|
if self.args.plots:
|
|
for normalize in True, False:
|
|
self.confusion_matrix.plot(save_dir=self.save_dir,
|
|
names=self.names.values(),
|
|
normalize=normalize,
|
|
on_plot=self.on_plot)
|
|
self.metrics.speed = self.speed
|
|
self.metrics.confusion_matrix = self.confusion_matrix
|
|
|
|
def get_stats(self):
|
|
"""Returns a dictionary of metrics obtained by processing targets and predictions."""
|
|
self.metrics.process(self.targets, self.pred)
|
|
return self.metrics.results_dict
|
|
|
|
def build_dataset(self, img_path):
|
|
return ClassificationDataset(root=img_path, args=self.args, augment=False)
|
|
|
|
def get_dataloader(self, dataset_path, batch_size):
|
|
"""Builds and returns a data loader for classification tasks with given parameters."""
|
|
dataset = self.build_dataset(dataset_path)
|
|
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
|
|
|
|
def print_results(self):
|
|
"""Prints evaluation metrics for YOLO object detection model."""
|
|
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
|
|
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
|
|
|
|
def plot_val_samples(self, batch, ni):
|
|
"""Plot validation image samples."""
|
|
plot_images(
|
|
images=batch['img'],
|
|
batch_idx=torch.arange(len(batch['img'])),
|
|
cls=batch['cls'].view(-1), # warning: use .view(), not .squeeze() for Classify models
|
|
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
|
names=self.names,
|
|
on_plot=self.on_plot)
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
"""Plots predicted bounding boxes on input images and saves the result."""
|
|
plot_images(batch['img'],
|
|
batch_idx=torch.arange(len(batch['img'])),
|
|
cls=torch.argmax(preds, dim=1),
|
|
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
|
names=self.names,
|
|
on_plot=self.on_plot) # pred
|
|
|
|
|
|
def val(cfg=DEFAULT_CFG, use_python=False):
|
|
"""Validate YOLO model using custom data."""
|
|
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
|
|
data = cfg.data or 'mnist160'
|
|
|
|
args = dict(model=model, data=data)
|
|
if use_python:
|
|
from ultralytics import YOLO
|
|
YOLO(model).val(**args)
|
|
else:
|
|
validator = ClassificationValidator(args=args)
|
|
validator(model=args['model'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
val()
|