You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

95 lines
2.7 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
from pathlib import Path
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, SETTINGS
from ultralytics.yolo.v8 import classify, detect, segment
CFG_DET = 'yolov8n.yaml'
CFG_SEG = 'yolov8n-seg.yaml'
CFG_CLS = 'squeezenet1_0'
CFG = get_config(DEFAULT_CONFIG)
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
SOURCE = ROOT / "assets"
def test_detect():
overrides = {"data": "coco8.yaml", "model": CFG_DET, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco8.yaml"
# Trainer
trainer = detect.DetectionTrainer(overrides=overrides)
trainer.train()
# Validator
val = detect.DetectionValidator(args=CFG)
val(model=trainer.best) # validate best.pt
# Predictor
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=f"{MODEL}.pt")
assert len(result), "predictor test failed"
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f"Expected exception caught: {e}")
return
Exception("Resume test failed!")
def test_segment():
overrides = {"data": "coco8-seg.yaml", "model": CFG_SEG, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco8-seg.yaml"
CFG.v5loader = False
# YOLO(CFG_SEG).train(**overrides) # works
# trainer
trainer = segment.SegmentationTrainer(overrides=overrides)
trainer.train()
# Validator
val = segment.SegmentationValidator(args=CFG)
val(model=trainer.best) # validate best.pt
# Predictor
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=f"{MODEL}-seg.pt")
assert len(result) == 2, "predictor test failed"
# Test resume
overrides["resume"] = trainer.last
trainer = segment.SegmentationTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f"Expected exception caught: {e}")
return
Exception("Resume test failed!")
def test_classify():
overrides = {"data": "mnist160", "model": "yolov8n-cls.yaml", "imgsz": 32, "epochs": 1, "batch": 64, "save": False}
CFG.data = "mnist160"
CFG.imgsz = 32
CFG.batch = 64
# YOLO(CFG_SEG).train(**overrides) # works
# Trainer
trainer = classify.ClassificationTrainer(overrides=overrides)
trainer.train()
# Validator
val = classify.ClassificationValidator(args=CFG)
val(model=trainer.best)
# Predictor
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=trainer.best)
assert len(result) == 2, "predictor test failed"