You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1.7 KiB
1.7 KiB
YOLOv8 OnnxRuntime C++
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
Benefits
- Friendly for deployment in the industrial sector.
- Faster than OpenCV's DNN inference on both CPU and GPU.
- Supports CUDA acceleration.
- Easy to add FP16 inference (using template functions).
Exporting YOLOv8 Models
To export YOLOv8 models, use the following Python script:
from ultralytics import YOLO
# Load a YOLOv8 model
model = YOLO("yolov8n.pt")
# Export the model
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
Alternatively, you can use the following command for exporting the model in the terminal
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
Dependencies
Dependency | Version |
---|---|
Onnxruntime(linux,windows,macos) | >=1.14.1 |
OpenCV | >=4.0.0 |
C++ | >=17 |
Cmake | >=3.5 |
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
Usage
// CPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, false};
// GPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, true};
// Load your image
cv::Mat img = cv::imread(img_path);
char* ret = p1->CreateSession(params);
ret = p->RunSession(img, res);
This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.