You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
558 lines
25 KiB
558 lines
25 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import contextlib
|
|
import hashlib
|
|
import json
|
|
import os
|
|
import random
|
|
import subprocess
|
|
import time
|
|
import zipfile
|
|
from multiprocessing.pool import ThreadPool
|
|
from pathlib import Path
|
|
from tarfile import is_tarfile
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import ExifTags, Image, ImageOps
|
|
from tqdm import tqdm
|
|
|
|
from ultralytics.nn.autobackend import check_class_names
|
|
from ultralytics.utils import (DATASETS_DIR, LOGGER, NUM_THREADS, ROOT, SETTINGS_YAML, clean_url, colorstr, emojis,
|
|
yaml_load)
|
|
from ultralytics.utils.checks import check_file, check_font, is_ascii
|
|
from ultralytics.utils.downloads import download, safe_download, unzip_file
|
|
from ultralytics.utils.ops import segments2boxes
|
|
|
|
HELP_URL = 'See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data'
|
|
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # image suffixes
|
|
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv', 'webm' # video suffixes
|
|
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
|
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
|
|
|
# Get orientation exif tag
|
|
for orientation in ExifTags.TAGS.keys():
|
|
if ExifTags.TAGS[orientation] == 'Orientation':
|
|
break
|
|
|
|
|
|
def img2label_paths(img_paths):
|
|
"""Define label paths as a function of image paths."""
|
|
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
|
|
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
|
|
|
|
|
def get_hash(paths):
|
|
"""Returns a single hash value of a list of paths (files or dirs)."""
|
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
|
h = hashlib.sha256(str(size).encode()) # hash sizes
|
|
h.update(''.join(paths).encode()) # hash paths
|
|
return h.hexdigest() # return hash
|
|
|
|
|
|
def exif_size(img):
|
|
"""Returns exif-corrected PIL size."""
|
|
s = img.size # (width, height)
|
|
with contextlib.suppress(Exception):
|
|
rotation = dict(img._getexif().items())[orientation]
|
|
if rotation in [6, 8]: # rotation 270 or 90
|
|
s = (s[1], s[0])
|
|
return s
|
|
|
|
|
|
def verify_image_label(args):
|
|
"""Verify one image-label pair."""
|
|
im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args
|
|
# Number (missing, found, empty, corrupt), message, segments, keypoints
|
|
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, '', [], None
|
|
try:
|
|
# Verify images
|
|
im = Image.open(im_file)
|
|
im.verify() # PIL verify
|
|
shape = exif_size(im) # image size
|
|
shape = (shape[1], shape[0]) # hw
|
|
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
|
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
|
if im.format.lower() in ('jpg', 'jpeg'):
|
|
with open(im_file, 'rb') as f:
|
|
f.seek(-2, 2)
|
|
if f.read() != b'\xff\xd9': # corrupt JPEG
|
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
|
|
|
|
# Verify labels
|
|
if os.path.isfile(lb_file):
|
|
nf = 1 # label found
|
|
with open(lb_file) as f:
|
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
|
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment
|
|
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
|
lb = np.array(lb, dtype=np.float32)
|
|
nl = len(lb)
|
|
if nl:
|
|
if keypoint:
|
|
assert lb.shape[1] == (5 + nkpt * ndim), f'labels require {(5 + nkpt * ndim)} columns each'
|
|
assert (lb[:, 5::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
|
assert (lb[:, 6::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
|
else:
|
|
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
|
assert (lb[:, 1:] <= 1).all(), \
|
|
f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
|
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
|
# All labels
|
|
max_cls = int(lb[:, 0].max()) # max label count
|
|
assert max_cls <= num_cls, \
|
|
f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \
|
|
f'Possible class labels are 0-{num_cls - 1}'
|
|
_, i = np.unique(lb, axis=0, return_index=True)
|
|
if len(i) < nl: # duplicate row check
|
|
lb = lb[i] # remove duplicates
|
|
if segments:
|
|
segments = [segments[x] for x in i]
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
|
|
else:
|
|
ne = 1 # label empty
|
|
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros(
|
|
(0, 5), dtype=np.float32)
|
|
else:
|
|
nm = 1 # label missing
|
|
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
|
|
if keypoint:
|
|
keypoints = lb[:, 5:].reshape(-1, nkpt, ndim)
|
|
if ndim == 2:
|
|
kpt_mask = np.ones(keypoints.shape[:2], dtype=np.float32)
|
|
kpt_mask = np.where(keypoints[..., 0] < 0, 0.0, kpt_mask)
|
|
kpt_mask = np.where(keypoints[..., 1] < 0, 0.0, kpt_mask)
|
|
keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) # (nl, nkpt, 3)
|
|
lb = lb[:, :5]
|
|
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
|
|
except Exception as e:
|
|
nc = 1
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
|
|
return [None, None, None, None, None, nm, nf, ne, nc, msg]
|
|
|
|
|
|
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1):
|
|
"""
|
|
Args:
|
|
imgsz (tuple): The image size.
|
|
polygons (list[np.ndarray]): [N, M], N is the number of polygons, M is the number of points(Be divided by 2).
|
|
color (int): color
|
|
downsample_ratio (int): downsample ratio
|
|
"""
|
|
mask = np.zeros(imgsz, dtype=np.uint8)
|
|
polygons = np.asarray(polygons)
|
|
polygons = polygons.astype(np.int32)
|
|
shape = polygons.shape
|
|
polygons = polygons.reshape(shape[0], -1, 2)
|
|
cv2.fillPoly(mask, polygons, color=color)
|
|
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio)
|
|
# NOTE: fillPoly firstly then resize is trying the keep the same way
|
|
# of loss calculation when mask-ratio=1.
|
|
mask = cv2.resize(mask, (nw, nh))
|
|
return mask
|
|
|
|
|
|
def polygons2masks(imgsz, polygons, color, downsample_ratio=1):
|
|
"""
|
|
Args:
|
|
imgsz (tuple): The image size.
|
|
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0)
|
|
color (int): color
|
|
downsample_ratio (int): downsample ratio
|
|
"""
|
|
masks = []
|
|
for si in range(len(polygons)):
|
|
mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio)
|
|
masks.append(mask)
|
|
return np.array(masks)
|
|
|
|
|
|
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1):
|
|
"""Return a (640, 640) overlap mask."""
|
|
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio),
|
|
dtype=np.int32 if len(segments) > 255 else np.uint8)
|
|
areas = []
|
|
ms = []
|
|
for si in range(len(segments)):
|
|
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1)
|
|
ms.append(mask)
|
|
areas.append(mask.sum())
|
|
areas = np.asarray(areas)
|
|
index = np.argsort(-areas)
|
|
ms = np.array(ms)[index]
|
|
for i in range(len(segments)):
|
|
mask = ms[i] * (i + 1)
|
|
masks = masks + mask
|
|
masks = np.clip(masks, a_min=0, a_max=i + 1)
|
|
return masks, index
|
|
|
|
|
|
def check_det_dataset(dataset, autodownload=True):
|
|
"""Download, check and/or unzip dataset if not found locally."""
|
|
data = check_file(dataset)
|
|
|
|
# Download (optional)
|
|
extract_dir = ''
|
|
if isinstance(data, (str, Path)) and (zipfile.is_zipfile(data) or is_tarfile(data)):
|
|
new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False)
|
|
data = next((DATASETS_DIR / new_dir).rglob('*.yaml'))
|
|
extract_dir, autodownload = data.parent, False
|
|
|
|
# Read yaml (optional)
|
|
if isinstance(data, (str, Path)):
|
|
data = yaml_load(data, append_filename=True) # dictionary
|
|
|
|
# Checks
|
|
for k in 'train', 'val':
|
|
if k not in data:
|
|
raise SyntaxError(
|
|
emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs."))
|
|
if 'names' not in data and 'nc' not in data:
|
|
raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs."))
|
|
if 'names' in data and 'nc' in data and len(data['names']) != data['nc']:
|
|
raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match."))
|
|
if 'names' not in data:
|
|
data['names'] = [f'class_{i}' for i in range(data['nc'])]
|
|
else:
|
|
data['nc'] = len(data['names'])
|
|
|
|
data['names'] = check_class_names(data['names'])
|
|
|
|
# Resolve paths
|
|
path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) # dataset root
|
|
|
|
if not path.is_absolute():
|
|
path = (DATASETS_DIR / path).resolve()
|
|
data['path'] = path # download scripts
|
|
for k in 'train', 'val', 'test':
|
|
if data.get(k): # prepend path
|
|
if isinstance(data[k], str):
|
|
x = (path / data[k]).resolve()
|
|
if not x.exists() and data[k].startswith('../'):
|
|
x = (path / data[k][3:]).resolve()
|
|
data[k] = str(x)
|
|
else:
|
|
data[k] = [str((path / x).resolve()) for x in data[k]]
|
|
|
|
# Parse yaml
|
|
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
|
|
if val:
|
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
|
if not all(x.exists() for x in val):
|
|
name = clean_url(dataset) # dataset name with URL auth stripped
|
|
m = f"\nDataset '{name}' images not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()]
|
|
if s and autodownload:
|
|
LOGGER.warning(m)
|
|
else:
|
|
m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_YAML}'"
|
|
raise FileNotFoundError(m)
|
|
t = time.time()
|
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
|
safe_download(url=s, dir=DATASETS_DIR, delete=True)
|
|
r = None # success
|
|
elif s.startswith('bash '): # bash script
|
|
LOGGER.info(f'Running {s} ...')
|
|
r = os.system(s)
|
|
else: # python script
|
|
r = exec(s, {'yaml': data}) # return None
|
|
dt = f'({round(time.time() - t, 1)}s)'
|
|
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌'
|
|
LOGGER.info(f'Dataset download {s}\n')
|
|
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf') # download fonts
|
|
|
|
return data # dictionary
|
|
|
|
|
|
def check_cls_dataset(dataset: str, split=''):
|
|
"""
|
|
Checks a classification dataset such as Imagenet.
|
|
|
|
This function accepts a `dataset` name and attempts to retrieve the corresponding dataset information.
|
|
If the dataset is not found locally, it attempts to download the dataset from the internet and save it locally.
|
|
|
|
Args:
|
|
dataset (str): The name of the dataset.
|
|
split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Defaults to ''.
|
|
|
|
Returns:
|
|
(dict): A dictionary containing the following keys:
|
|
- 'train' (Path): The directory path containing the training set of the dataset.
|
|
- 'val' (Path): The directory path containing the validation set of the dataset.
|
|
- 'test' (Path): The directory path containing the test set of the dataset.
|
|
- 'nc' (int): The number of classes in the dataset.
|
|
- 'names' (dict): A dictionary of class names in the dataset.
|
|
|
|
Raises:
|
|
FileNotFoundError: If the specified dataset is not found and cannot be downloaded.
|
|
"""
|
|
|
|
dataset = Path(dataset)
|
|
data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve()
|
|
if not data_dir.is_dir():
|
|
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
|
|
t = time.time()
|
|
if str(dataset) == 'imagenet':
|
|
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
|
|
else:
|
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
|
|
download(url, dir=data_dir.parent)
|
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
|
|
LOGGER.info(s)
|
|
train_set = data_dir / 'train'
|
|
val_set = data_dir / 'val' if (data_dir / 'val').exists() else None # data/test or data/val
|
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else None # data/val or data/test
|
|
if split == 'val' and not val_set:
|
|
LOGGER.info("WARNING ⚠️ Dataset 'split=val' not found, using 'split=test' instead.")
|
|
elif split == 'test' and not test_set:
|
|
LOGGER.info("WARNING ⚠️ Dataset 'split=test' not found, using 'split=val' instead.")
|
|
|
|
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
|
|
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list
|
|
names = dict(enumerate(sorted(names)))
|
|
return {'train': train_set, 'val': val_set or test_set, 'test': test_set or val_set, 'nc': nc, 'names': names}
|
|
|
|
|
|
class HUBDatasetStats():
|
|
"""
|
|
A class for generating HUB dataset JSON and `-hub` dataset directory.
|
|
|
|
Args:
|
|
path (str): Path to data.yaml or data.zip (with data.yaml inside data.zip). Default is 'coco128.yaml'.
|
|
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Default is 'detect'.
|
|
autodownload (bool): Attempt to download dataset if not found locally. Default is False.
|
|
|
|
Usage
|
|
from ultralytics.data.utils import HUBDatasetStats
|
|
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8.zip', task='detect') # detect dataset
|
|
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-seg.zip', task='segment') # segment dataset
|
|
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-pose.zip', task='pose') # pose dataset
|
|
stats.get_json(save=False)
|
|
stats.process_images()
|
|
"""
|
|
|
|
def __init__(self, path='coco128.yaml', task='detect', autodownload=False):
|
|
"""Initialize class."""
|
|
LOGGER.info(f'Starting HUB dataset checks for {path}....')
|
|
zipped, data_dir, yaml_path = self._unzip(Path(path))
|
|
try:
|
|
# data = yaml_load(check_yaml(yaml_path)) # data dict
|
|
data = check_det_dataset(yaml_path, autodownload) # data dict
|
|
if zipped:
|
|
data['path'] = data_dir
|
|
except Exception as e:
|
|
raise Exception('error/HUB/dataset_stats/yaml_load') from e
|
|
|
|
self.hub_dir = Path(str(data['path']) + '-hub')
|
|
self.im_dir = self.hub_dir / 'images'
|
|
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
|
|
self.stats = {'nc': len(data['names']), 'names': list(data['names'].values())} # statistics dictionary
|
|
self.data = data
|
|
self.task = task # detect, segment, pose, classify
|
|
|
|
@staticmethod
|
|
def _find_yaml(dir):
|
|
"""Return data.yaml file."""
|
|
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
|
|
assert files, f'No *.yaml file found in {dir}'
|
|
if len(files) > 1:
|
|
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
|
|
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
|
|
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
|
|
return files[0]
|
|
|
|
def _unzip(self, path):
|
|
"""Unzip data.zip."""
|
|
if not str(path).endswith('.zip'): # path is data.yaml
|
|
return False, None, path
|
|
unzip_dir = unzip_file(path, path=path.parent)
|
|
assert unzip_dir.is_dir(), f'Error unzipping {path}, {unzip_dir} not found. ' \
|
|
f'path/to/abc.zip MUST unzip to path/to/abc/'
|
|
return True, str(unzip_dir), self._find_yaml(unzip_dir) # zipped, data_dir, yaml_path
|
|
|
|
def _hub_ops(self, f):
|
|
"""Saves a compressed image for HUB previews."""
|
|
compress_one_image(f, self.im_dir / Path(f).name) # save to dataset-hub
|
|
|
|
def get_json(self, save=False, verbose=False):
|
|
"""Return dataset JSON for Ultralytics HUB."""
|
|
from ultralytics.data import YOLODataset # ClassificationDataset
|
|
|
|
def _round(labels):
|
|
"""Update labels to integer class and 4 decimal place floats."""
|
|
if self.task == 'detect':
|
|
coordinates = labels['bboxes']
|
|
elif self.task == 'segment':
|
|
coordinates = [x.flatten() for x in labels['segments']]
|
|
elif self.task == 'pose':
|
|
n = labels['keypoints'].shape[0]
|
|
coordinates = np.concatenate((labels['bboxes'], labels['keypoints'].reshape(n, -1)), 1)
|
|
else:
|
|
raise ValueError('Undefined dataset task.')
|
|
zipped = zip(labels['cls'], coordinates)
|
|
return [[int(c), *(round(float(x), 4) for x in points)] for c, points in zipped]
|
|
|
|
for split in 'train', 'val', 'test':
|
|
if self.data.get(split) is None:
|
|
self.stats[split] = None # i.e. no test set
|
|
continue
|
|
|
|
dataset = YOLODataset(img_path=self.data[split],
|
|
data=self.data,
|
|
use_segments=self.task == 'segment',
|
|
use_keypoints=self.task == 'pose')
|
|
x = np.array([
|
|
np.bincount(label['cls'].astype(int).flatten(), minlength=self.data['nc'])
|
|
for label in tqdm(dataset.labels, total=len(dataset), desc='Statistics')]) # shape(128x80)
|
|
self.stats[split] = {
|
|
'instance_stats': {
|
|
'total': int(x.sum()),
|
|
'per_class': x.sum(0).tolist()},
|
|
'image_stats': {
|
|
'total': len(dataset),
|
|
'unlabelled': int(np.all(x == 0, 1).sum()),
|
|
'per_class': (x > 0).sum(0).tolist()},
|
|
'labels': [{
|
|
Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)]}
|
|
|
|
# Save, print and return
|
|
if save:
|
|
stats_path = self.hub_dir / 'stats.json'
|
|
LOGGER.info(f'Saving {stats_path.resolve()}...')
|
|
with open(stats_path, 'w') as f:
|
|
json.dump(self.stats, f) # save stats.json
|
|
if verbose:
|
|
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False))
|
|
return self.stats
|
|
|
|
def process_images(self):
|
|
"""Compress images for Ultralytics HUB."""
|
|
from ultralytics.data import YOLODataset # ClassificationDataset
|
|
|
|
for split in 'train', 'val', 'test':
|
|
if self.data.get(split) is None:
|
|
continue
|
|
dataset = YOLODataset(img_path=self.data[split], data=self.data)
|
|
with ThreadPool(NUM_THREADS) as pool:
|
|
for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f'{split} images'):
|
|
pass
|
|
LOGGER.info(f'Done. All images saved to {self.im_dir}')
|
|
return self.im_dir
|
|
|
|
|
|
def compress_one_image(f, f_new=None, max_dim=1920, quality=50):
|
|
"""
|
|
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the
|
|
Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will
|
|
not be resized.
|
|
|
|
Args:
|
|
f (str): The path to the input image file.
|
|
f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten.
|
|
max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels.
|
|
quality (int, optional): The image compression quality as a percentage. Default is 50%.
|
|
|
|
Usage:
|
|
from pathlib import Path
|
|
from ultralytics.data.utils import compress_one_image
|
|
for f in Path('/Users/glennjocher/Downloads/dataset').rglob('*.jpg'):
|
|
compress_one_image(f)
|
|
"""
|
|
try: # use PIL
|
|
im = Image.open(f)
|
|
r = max_dim / max(im.height, im.width) # ratio
|
|
if r < 1.0: # image too large
|
|
im = im.resize((int(im.width * r), int(im.height * r)))
|
|
im.save(f_new or f, 'JPEG', quality=quality, optimize=True) # save
|
|
except Exception as e: # use OpenCV
|
|
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
|
|
im = cv2.imread(f)
|
|
im_height, im_width = im.shape[:2]
|
|
r = max_dim / max(im_height, im_width) # ratio
|
|
if r < 1.0: # image too large
|
|
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
|
cv2.imwrite(str(f_new or f), im)
|
|
|
|
|
|
def delete_dsstore(path):
|
|
"""
|
|
Deletes all ".DS_store" files under a specified directory.
|
|
|
|
Args:
|
|
path (str, optional): The directory path where the ".DS_store" files should be deleted.
|
|
|
|
Usage:
|
|
from ultralytics.data.utils import delete_dsstore
|
|
delete_dsstore('/Users/glennjocher/Downloads/dataset')
|
|
|
|
Note:
|
|
".DS_store" files are created by the Apple operating system and contain metadata about folders and files. They
|
|
are hidden system files and can cause issues when transferring files between different operating systems.
|
|
"""
|
|
# Delete Apple .DS_store files
|
|
files = list(Path(path).rglob('.DS_store'))
|
|
LOGGER.info(f'Deleting *.DS_store files: {files}')
|
|
for f in files:
|
|
f.unlink()
|
|
|
|
|
|
def zip_directory(dir, use_zipfile_library=True):
|
|
"""
|
|
Zips a directory and saves the archive to the specified output path.
|
|
|
|
Args:
|
|
dir (str): The path to the directory to be zipped.
|
|
use_zipfile_library (bool): Whether to use zipfile library or shutil for zipping.
|
|
|
|
Usage:
|
|
from ultralytics.data.utils import zip_directory
|
|
zip_directory('/Users/glennjocher/Downloads/playground')
|
|
|
|
zip -r coco8-pose.zip coco8-pose
|
|
"""
|
|
delete_dsstore(dir)
|
|
if use_zipfile_library:
|
|
dir = Path(dir)
|
|
with zipfile.ZipFile(dir.with_suffix('.zip'), 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
|
for file_path in dir.glob('**/*'):
|
|
if file_path.is_file():
|
|
zip_file.write(file_path, file_path.relative_to(dir))
|
|
else:
|
|
import shutil
|
|
shutil.make_archive(dir, 'zip', dir)
|
|
|
|
|
|
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
|
"""
|
|
Autosplit a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt files.
|
|
|
|
Args:
|
|
path (Path, optional): Path to images directory. Defaults to DATASETS_DIR / 'coco128/images'.
|
|
weights (list | tuple, optional): Train, validation, and test split fractions. Defaults to (0.9, 0.1, 0.0).
|
|
annotated_only (bool, optional): If True, only images with an associated txt file are used. Defaults to False.
|
|
|
|
Usage:
|
|
from utils.dataloaders import autosplit
|
|
autosplit()
|
|
"""
|
|
|
|
path = Path(path) # images dir
|
|
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
|
n = len(files) # number of files
|
|
random.seed(0) # for reproducibility
|
|
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
|
|
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
|
for x in txt:
|
|
if (path.parent / x).exists():
|
|
(path.parent / x).unlink() # remove existing
|
|
|
|
LOGGER.info(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
|
for i, img in tqdm(zip(indices, files), total=n):
|
|
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
|
with open(path.parent / txt[i], 'a') as f:
|
|
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file
|