You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
5.1 KiB
134 lines
5.1 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
"""
|
|
YOLO-NAS model interface.
|
|
|
|
Usage - Predict:
|
|
from ultralytics import NAS
|
|
|
|
model = NAS('yolo_nas_s')
|
|
results = model.predict('ultralytics/assets/bus.jpg')
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from ultralytics.yolo.cfg import get_cfg
|
|
from ultralytics.yolo.engine.exporter import Exporter
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir
|
|
from ultralytics.yolo.utils.checks import check_imgsz
|
|
|
|
from ...yolo.utils.torch_utils import model_info, smart_inference_mode
|
|
from .predict import NASPredictor
|
|
from .val import NASValidator
|
|
|
|
|
|
class NAS:
|
|
|
|
def __init__(self, model='yolo_nas_s.pt') -> None:
|
|
# Load or create new NAS model
|
|
import super_gradients
|
|
|
|
self.predictor = None
|
|
suffix = Path(model).suffix
|
|
if suffix == '.pt':
|
|
self._load(model)
|
|
elif suffix == '':
|
|
self.model = super_gradients.training.models.get(model, pretrained_weights='coco')
|
|
self.task = 'detect'
|
|
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
|
|
|
# Standardize model
|
|
self.model.fuse = lambda verbose=True: self.model
|
|
self.model.stride = torch.tensor([32])
|
|
self.model.names = dict(enumerate(self.model._class_names))
|
|
self.model.is_fused = lambda: False # for info()
|
|
self.model.yaml = {} # for info()
|
|
self.model.pt_path = model # for export()
|
|
self.model.task = 'detect' # for export()
|
|
self.info()
|
|
|
|
@smart_inference_mode()
|
|
def _load(self, weights: str):
|
|
self.model = torch.load(weights)
|
|
|
|
@smart_inference_mode()
|
|
def predict(self, source=None, stream=False, **kwargs):
|
|
"""
|
|
Perform prediction using the YOLO model.
|
|
|
|
Args:
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
|
Accepts all source types accepted by the YOLO model.
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
|
**kwargs : Additional keyword arguments passed to the predictor.
|
|
Check the 'configuration' section in the documentation for all available options.
|
|
|
|
Returns:
|
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
|
"""
|
|
if source is None:
|
|
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
|
overrides = dict(conf=0.25, task='detect', mode='predict')
|
|
overrides.update(kwargs) # prefer kwargs
|
|
if not self.predictor:
|
|
self.predictor = NASPredictor(overrides=overrides)
|
|
self.predictor.setup_model(model=self.model)
|
|
else: # only update args if predictor is already setup
|
|
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
|
return self.predictor(source, stream=stream)
|
|
|
|
def train(self, **kwargs):
|
|
"""Function trains models but raises an error as NAS models do not support training."""
|
|
raise NotImplementedError("NAS models don't support training")
|
|
|
|
def val(self, **kwargs):
|
|
"""Run validation given dataset."""
|
|
overrides = dict(task='detect', mode='val')
|
|
overrides.update(kwargs) # prefer kwargs
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
|
validator = NASValidator(args=args)
|
|
validator(model=self.model)
|
|
self.metrics = validator.metrics
|
|
return validator.metrics
|
|
|
|
@smart_inference_mode()
|
|
def export(self, **kwargs):
|
|
"""
|
|
Export model.
|
|
|
|
Args:
|
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
|
"""
|
|
overrides = dict(task='detect')
|
|
overrides.update(kwargs)
|
|
overrides['mode'] = 'export'
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
args.task = self.task
|
|
if args.imgsz == DEFAULT_CFG.imgsz:
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
|
if args.batch == DEFAULT_CFG.batch:
|
|
args.batch = 1 # default to 1 if not modified
|
|
return Exporter(overrides=args)(model=self.model)
|
|
|
|
def info(self, detailed=False, verbose=True):
|
|
"""
|
|
Logs model info.
|
|
|
|
Args:
|
|
detailed (bool): Show detailed information about model.
|
|
verbose (bool): Controls verbosity.
|
|
"""
|
|
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
|
|
|
def __call__(self, source=None, stream=False, **kwargs):
|
|
"""Calls the 'predict' function with given arguments to perform object detection."""
|
|
return self.predict(source, stream, **kwargs)
|
|
|
|
def __getattr__(self, attr):
|
|
"""Raises error if object has no requested attribute."""
|
|
name = self.__class__.__name__
|
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|