You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

48 lines
1.7 KiB

import hydra
import torch
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CONFIG
from ultralytics.yolo.utils.metrics import ClassifyMetrics
class ClassificationValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.metrics = ClassifyMetrics()
def init_metrics(self, model):
self.correct = torch.tensor([], device=next(model.parameters()).device)
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()
batch["cls"] = batch["cls"].to(self.device)
return batch
def update_metrics(self, preds, batch):
targets = batch["cls"]
correct_in_batch = (targets[:, None] == preds).float()
self.correct = torch.cat((self.correct, correct_in_batch))
def get_stats(self):
self.metrics.process(self.correct)
return self.metrics.results_dict
def get_dataloader(self, dataset_path, batch_size):
return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size)
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def val(cfg):
cfg.data = cfg.data or "imagenette160"
cfg.model = cfg.model or "resnet18"
validator = ClassificationValidator(args=cfg)
validator(model=cfg.model)
if __name__ == "__main__":
val()