You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
407 lines
17 KiB
407 lines
17 KiB
import contextlib
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
|
|
import thop
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchvision
|
|
|
|
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
|
|
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
|
|
GhostBottleneck, GhostConv, Segment)
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG_DICT, DEFAULT_CONFIG_KEYS, LOGGER, colorstr, yaml_load
|
|
from ultralytics.yolo.utils.checks import check_yaml
|
|
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_dicts, make_divisible,
|
|
model_info, scale_img, time_sync)
|
|
|
|
|
|
class BaseModel(nn.Module):
|
|
'''
|
|
The BaseModel class is a base class for all the models in the Ultralytics YOLO family.
|
|
'''
|
|
|
|
def forward(self, x, profile=False, visualize=False):
|
|
"""
|
|
> `forward` is a wrapper for `_forward_once` that runs the model on a single scale
|
|
|
|
Args:
|
|
x: the input image
|
|
profile: whether to profile the model. Defaults to False
|
|
visualize: if True, will return the intermediate feature maps. Defaults to False
|
|
|
|
Returns:
|
|
The output of the network.
|
|
"""
|
|
return self._forward_once(x, profile, visualize)
|
|
|
|
def _forward_once(self, x, profile=False, visualize=False):
|
|
"""
|
|
> Forward pass of the network
|
|
|
|
Args:
|
|
x: input to the model
|
|
profile: if True, the time taken for each layer will be printed. Defaults to False
|
|
visualize: If True, it will save the feature maps of the model. Defaults to False
|
|
|
|
Returns:
|
|
The last layer of the model.
|
|
"""
|
|
y, dt = [], [] # outputs
|
|
for m in self.model:
|
|
if m.f != -1: # if not from previous layer
|
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
|
if profile:
|
|
self._profile_one_layer(m, x, dt)
|
|
x = m(x) # run
|
|
y.append(x if m.i in self.save else None) # save output
|
|
if visualize:
|
|
pass
|
|
# TODO: feature_visualization(x, m.type, m.i, save_dir=visualize)
|
|
return x
|
|
|
|
def _profile_one_layer(self, m, x, dt):
|
|
"""
|
|
It takes a model, an input, and a list of times, and it profiles the model on the input, appending
|
|
the time to the list
|
|
|
|
Args:
|
|
m: the model
|
|
x: the input image
|
|
dt: list of time taken for each layer
|
|
"""
|
|
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
|
t = time_sync()
|
|
for _ in range(10):
|
|
m(x.copy() if c else x)
|
|
dt.append((time_sync() - t) * 100)
|
|
if m == self.model[0]:
|
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
|
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
|
if c:
|
|
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
|
|
|
def fuse(self):
|
|
"""
|
|
> It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer
|
|
|
|
Returns:
|
|
The model is being returned.
|
|
"""
|
|
LOGGER.info('Fusing layers... ')
|
|
for m in self.model.modules():
|
|
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
|
delattr(m, 'bn') # remove batchnorm
|
|
m.forward = m.forward_fuse # update forward
|
|
self.info()
|
|
return self
|
|
|
|
def info(self, verbose=False, imgsz=640):
|
|
"""
|
|
Prints model information
|
|
|
|
Args:
|
|
verbose: if True, prints out the model information. Defaults to False
|
|
imgsz: the size of the image that the model will be trained on. Defaults to 640
|
|
"""
|
|
model_info(self, verbose, imgsz)
|
|
|
|
def _apply(self, fn):
|
|
"""
|
|
`_apply()` is a function that applies a function to all the tensors in the model that are not
|
|
parameters or registered buffers
|
|
|
|
Args:
|
|
fn: the function to apply to the model
|
|
|
|
Returns:
|
|
A model that is a Detect() object.
|
|
"""
|
|
self = super()._apply(fn)
|
|
m = self.model[-1] # Detect()
|
|
if isinstance(m, (Detect, Segment)):
|
|
m.stride = fn(m.stride)
|
|
m.anchors = fn(m.anchors)
|
|
m.strides = fn(m.strides)
|
|
return self
|
|
|
|
def load(self, weights):
|
|
"""
|
|
> This function loads the weights of the model from a file
|
|
|
|
Args:
|
|
weights: The weights to load into the model.
|
|
"""
|
|
# Force all tasks to implement this function
|
|
raise NotImplementedError("This function needs to be implemented by derived classes!")
|
|
|
|
|
|
class DetectionModel(BaseModel):
|
|
# YOLOv5 detection model
|
|
def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes
|
|
super().__init__()
|
|
self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True) # cfg dict
|
|
|
|
# Define model
|
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
|
if nc and nc != self.yaml['nc']:
|
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
|
self.yaml['nc'] = nc # override yaml value
|
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist
|
|
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
|
|
self.inplace = self.yaml.get('inplace', True)
|
|
|
|
# Build strides
|
|
m = self.model[-1] # Detect()
|
|
if isinstance(m, (Detect, Segment)):
|
|
s = 256 # 2x min stride
|
|
m.inplace = self.inplace
|
|
forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
|
|
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
|
self.stride = m.stride
|
|
m.bias_init() # only run once
|
|
|
|
# Init weights, biases
|
|
initialize_weights(self)
|
|
if verbose:
|
|
self.info()
|
|
LOGGER.info('')
|
|
|
|
def forward(self, x, augment=False, profile=False, visualize=False):
|
|
if augment:
|
|
return self._forward_augment(x) # augmented inference, None
|
|
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
|
|
|
def _forward_augment(self, x):
|
|
img_size = x.shape[-2:] # height, width
|
|
s = [1, 0.83, 0.67] # scales
|
|
f = [None, 3, None] # flips (2-ud, 3-lr)
|
|
y = [] # outputs
|
|
for si, fi in zip(s, f):
|
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
|
yi = self._forward_once(xi)[0] # forward
|
|
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
|
yi = self._descale_pred(yi, fi, si, img_size)
|
|
y.append(yi)
|
|
y = self._clip_augmented(y) # clip augmented tails
|
|
return torch.cat(y, -1), None # augmented inference, train
|
|
|
|
@staticmethod
|
|
def _descale_pred(p, flips, scale, img_size, dim=1):
|
|
# de-scale predictions following augmented inference (inverse operation)
|
|
p[:, :4] /= scale # de-scale
|
|
x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
|
|
if flips == 2:
|
|
y = img_size[0] - y # de-flip ud
|
|
elif flips == 3:
|
|
x = img_size[1] - x # de-flip lr
|
|
return torch.cat((x, y, wh, cls), dim)
|
|
|
|
def _clip_augmented(self, y):
|
|
# Clip YOLOv5 augmented inference tails
|
|
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
|
g = sum(4 ** x for x in range(nl)) # grid points
|
|
e = 1 # exclude layer count
|
|
i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices
|
|
y[0] = y[0][..., :-i] # large
|
|
i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
|
y[-1] = y[-1][..., i:] # small
|
|
return y
|
|
|
|
def load(self, weights, verbose=True):
|
|
csd = weights.float().state_dict() # checkpoint state_dict as FP32
|
|
csd = intersect_dicts(csd, self.state_dict()) # intersect
|
|
self.load_state_dict(csd, strict=False) # load
|
|
if verbose:
|
|
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')
|
|
|
|
|
|
class SegmentationModel(DetectionModel):
|
|
# YOLOv5 segmentation model
|
|
def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
|
|
super().__init__(cfg, ch, nc, verbose)
|
|
|
|
|
|
class ClassificationModel(BaseModel):
|
|
# YOLOv5 classification model
|
|
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
|
super().__init__()
|
|
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
|
|
|
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
|
# Create a YOLOv5 classification model from a YOLOv5 detection model
|
|
from ultralytics.nn.autobackend import AutoBackend
|
|
if isinstance(model, AutoBackend):
|
|
model = model.model # unwrap DetectMultiBackend
|
|
model.model = model.model[:cutoff] # backbone
|
|
m = model.model[-1] # last layer
|
|
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
|
c = Classify(ch, nc) # Classify()
|
|
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
|
model.model[-1] = c # replace
|
|
self.model = model.model
|
|
self.stride = model.stride
|
|
self.save = []
|
|
self.nc = nc
|
|
|
|
def _from_yaml(self, cfg):
|
|
# TODO: Create a YOLOv5 classification model from a *.yaml file
|
|
self.model = None
|
|
|
|
def load(self, weights):
|
|
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
|
|
csd = model.float().state_dict()
|
|
csd = intersect_dicts(csd, self.state_dict()) # intersect
|
|
self.load_state_dict(csd, strict=False) # load
|
|
|
|
@staticmethod
|
|
def reshape_outputs(model, nc):
|
|
# Update a TorchVision classification model to class count 'n' if required
|
|
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
|
if isinstance(m, Classify): # YOLO Classify() head
|
|
if m.linear.out_features != nc:
|
|
m.linear = nn.Linear(m.linear.in_features, nc)
|
|
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
|
if m.out_features != nc:
|
|
setattr(model, name, nn.Linear(m.in_features, nc))
|
|
elif isinstance(m, nn.Sequential):
|
|
types = [type(x) for x in m]
|
|
if nn.Linear in types:
|
|
i = types.index(nn.Linear) # nn.Linear index
|
|
if m[i].out_features != nc:
|
|
m[i] = nn.Linear(m[i].in_features, nc)
|
|
elif nn.Conv2d in types:
|
|
i = types.index(nn.Conv2d) # nn.Conv2d index
|
|
if m[i].out_channels != nc:
|
|
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
|
|
|
|
|
|
# Functions ------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
|
|
LOGGER.info("WARNING: Deprecated in favor of attempt_load_one_weight()")
|
|
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
|
from ultralytics.yolo.utils.downloads import attempt_download
|
|
|
|
model = Ensemble()
|
|
for w in weights if isinstance(weights, list) else [weights]:
|
|
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
|
args = {**DEFAULT_CONFIG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args
|
|
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
|
|
|
# Model compatibility updates
|
|
ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # attach args to model
|
|
ckpt.pt_path = weights # attach *.pt file path to model
|
|
if not hasattr(ckpt, 'stride'):
|
|
ckpt.stride = torch.tensor([32.])
|
|
|
|
# Append
|
|
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
|
|
|
# Module compatibility updates
|
|
for m in model.modules():
|
|
t = type(m)
|
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
|
m.inplace = inplace # torch 1.7.0 compatibility
|
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
|
|
|
# Return model
|
|
if len(model) == 1:
|
|
return model[-1]
|
|
|
|
# Return ensemble
|
|
print(f'Ensemble created with {weights}\n')
|
|
for k in 'names', 'nc', 'yaml':
|
|
setattr(model, k, getattr(model[0], k))
|
|
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
|
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
|
return model
|
|
|
|
|
|
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
|
|
# Loads a single model weights
|
|
from ultralytics.yolo.utils.downloads import attempt_download
|
|
|
|
ckpt = torch.load(attempt_download(weight), map_location='cpu') # load
|
|
args = {**DEFAULT_CONFIG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args
|
|
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
|
|
|
# Model compatibility updates
|
|
model.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # attach args to model
|
|
model.pt_path = weight # attach *.pt file path to model
|
|
if not hasattr(model, 'stride'):
|
|
model.stride = torch.tensor([32.])
|
|
|
|
model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode
|
|
|
|
# Module compatibility updates
|
|
for m in model.modules():
|
|
t = type(m)
|
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
|
m.inplace = inplace # torch 1.7.0 compatibility
|
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
|
|
|
# Return model and ckpt
|
|
return model, ckpt
|
|
|
|
|
|
def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
|
|
# Parse a YOLOv5 model.yaml dictionary
|
|
if verbose:
|
|
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
|
|
nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
|
if act:
|
|
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
|
if verbose:
|
|
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
|
no = nc + 4 # number of outputs = classes + box
|
|
|
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
|
m = eval(m) if isinstance(m, str) else m # eval strings
|
|
for j, a in enumerate(args):
|
|
with contextlib.suppress(NameError):
|
|
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
|
|
|
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
|
if m in {
|
|
Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP,
|
|
C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
|
c1, c2 = ch[f], args[0]
|
|
if c2 != no: # if not output
|
|
c2 = make_divisible(c2 * gw, 8)
|
|
|
|
args = [c1, c2, *args[1:]]
|
|
if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}:
|
|
args.insert(2, n) # number of repeats
|
|
n = 1
|
|
elif m is nn.BatchNorm2d:
|
|
args = [ch[f]]
|
|
elif m is Concat:
|
|
c2 = sum(ch[x] for x in f)
|
|
# TODO: channel, gw, gd
|
|
elif m in {Detect, Segment}:
|
|
args.append([ch[x] for x in f])
|
|
if m is Segment:
|
|
args[2] = make_divisible(args[2] * gw, 8)
|
|
else:
|
|
c2 = ch[f]
|
|
|
|
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
|
t = str(m)[8:-2].replace('__main__.', '') # module type
|
|
m.np = sum(x.numel() for x in m_.parameters()) # number params
|
|
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
|
|
if verbose:
|
|
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
|
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
|
layers.append(m_)
|
|
if i == 0:
|
|
ch = []
|
|
ch.append(c2)
|
|
return nn.Sequential(*layers), sorted(save)
|