from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: import wandb assert hasattr(wandb, '__version__') except (ImportError, AssertionError): wandb = None def on_pretrain_routine_start(trainer): wandb.init(project=trainer.args.project or "YOLOv8", name=trainer.args.name, config=dict( trainer.args)) if not wandb.run else wandb.run def on_fit_epoch_end(trainer): wandb.run.log(trainer.metrics, step=trainer.epoch + 1) if trainer.epoch == 0: model_info = { "model/parameters": get_num_params(trainer.model), "model/GFLOPs": round(get_flops(trainer.model), 3), "model/speed(ms)": round(trainer.validator.speed[1], 3)} wandb.run.log(model_info, step=trainer.epoch + 1) def on_train_epoch_end(trainer): wandb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1) wandb.run.log(trainer.lr, step=trainer.epoch + 1) if trainer.epoch == 1: wandb.run.log({f.stem: wandb.Image(str(f)) for f in trainer.save_dir.glob('train_batch*.jpg')}, step=trainer.epoch + 1) def on_train_end(trainer): art = wandb.Artifact(type="model", name=f"run_{wandb.run.id}_model") if trainer.best.exists(): art.add_file(trainer.best) wandb.run.log_artifact(art) callbacks = { "on_pretrain_routine_start": on_pretrain_routine_start, "on_train_epoch_end": on_train_epoch_end, "on_fit_epoch_end": on_fit_epoch_end, "on_train_end": on_train_end} if wandb else {}