import json from time import time import torch from ultralytics.hub.utils import PREFIX, sync_analytics from ultralytics.yolo.utils import LOGGER def on_pretrain_routine_end(trainer): session = getattr(trainer, 'hub_session', None) if session: # Start timer for upload rate limit LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀") session.t = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit def on_fit_epoch_end(trainer): session = getattr(trainer, 'hub_session', None) if session: session.metrics_queue[trainer.epoch] = json.dumps(trainer.metrics) # json string if time() - session.t['metrics'] > session.rate_limits['metrics']: session.upload_metrics() session.t['metrics'] = time() # reset timer session.metrics_queue = {} # reset queue def on_model_save(trainer): session = getattr(trainer, 'hub_session', None) if session: # Upload checkpoints with rate limiting is_best = trainer.best_fitness == trainer.fitness if time() - session.t['ckpt'] > session.rate_limits['ckpt']: LOGGER.info(f"{PREFIX}Uploading checkpoint {session.model_id}") session.upload_model(trainer.epoch, trainer.last, is_best) session.t['ckpt'] = time() # reset timer def on_train_end(trainer): session = getattr(trainer, 'hub_session', None) if session: # Upload final model and metrics with exponential standoff LOGGER.info(f"{PREFIX}Training completed successfully ✅\n" f"{PREFIX}Uploading final {session.model_id}") session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics['metrics/mAP50-95(B)'], final=True) session.alive = False # stop heartbeats LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀") def on_train_start(trainer): sync_analytics(trainer.args) def on_val_start(validator): sync_analytics(validator.args) def on_predict_start(predictor): sync_analytics(predictor.args) def on_export_start(exporter): sync_analytics(exporter.args) callbacks = { "on_pretrain_routine_end": on_pretrain_routine_end, "on_fit_epoch_end": on_fit_epoch_end, "on_model_save": on_model_save, "on_train_end": on_train_end, "on_train_start": on_train_start, "on_val_start": on_val_start, "on_predict_start": on_predict_start, "on_export_start": on_export_start}