# YOLOv8 OnnxRuntime C++ This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API. ## Benefits - Friendly for deployment in the industrial sector. - Faster than OpenCV's DNN inference on both CPU and GPU. - Supports FP32 and FP16 CUDA acceleration. ## Exporting YOLOv8 Models To export YOLOv8 models, use the following Python script: ```python from ultralytics import YOLO # Load a YOLOv8 model model = YOLO("yolov8n.pt") # Export the model model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640) ``` Alternatively, you can use the following command for exporting the model in the terminal ```bash yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640 ``` ## Dependencies | Dependency | Version | | -------------------------------- | -------- | | Onnxruntime(linux,windows,macos) | >=1.14.1 | | OpenCV | >=4.0.0 | | C++ | >=17 | | Cmake | >=3.5 | Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature. ## Usage ```c++ // CPU inference DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, false}; // GPU inference DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, true}; // Load your image cv::Mat img = cv::imread(img_path); // Init Inference Session char* ret = yoloDetector->CreateSession(params); ret = yoloDetector->RunSession(img, res); ``` This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.