# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ AutoAnchor utils """ import random import numpy as np import torch import yaml from tqdm import tqdm from ultralytics.yolo.data import BaseDataset from ultralytics.yolo.utils import LOGGER, TryExcept from .loggers import colorstr PREFIX = colorstr('AutoAnchor: ') def check_anchor_order(m): # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer da = a[-1] - a[0] # delta a ds = m.stride[-1] - m.stride[0] # delta s if da and (da.sign() != ds.sign()): # same order LOGGER.info(f'{PREFIX}Reversing anchor order') m.anchors[:] = m.anchors.flip(0) @TryExcept(f'{PREFIX}ERROR: ') def check_anchors(dataset, model, thr=4.0, imgsz=640): # Check anchor fit to data, recompute if necessary m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh def metric(k): # compute metric r = wh[:, None] / k[None] x = torch.min(r, 1 / r).min(2)[0] # ratio metric best = x.max(1)[0] # best_x aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold bpr = (best > 1 / thr).float().mean() # best possible recall return bpr, aat stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides anchors = m.anchors.clone() * stride # current anchors bpr, aat = metric(anchors.cpu().view(-1, 2)) s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). ' if bpr > 0.98: # threshold to recompute LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅') else: LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...') na = m.anchors.numel() // 2 # number of anchors anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) new_bpr = metric(anchors)[0] if new_bpr > bpr: # replace anchors anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) m.anchors[:] = anchors.clone().view_as(m.anchors) check_anchor_order(m) # must be in pixel-space (not grid-space) m.anchors /= stride s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)' else: s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)' LOGGER.info(s) def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): """ Creates kmeans-evolved anchors from training dataset Arguments: dataset: path to data.yaml, or a loaded dataset n: number of anchors img_size: image size used for training thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 gen: generations to evolve anchors using genetic algorithm verbose: print all results Return: k: kmeans evolved anchors Usage: from utils.autoanchor import *; _ = kmean_anchors() """ from scipy.cluster.vq import kmeans npr = np.random thr = 1 / thr def metric(k, wh): # compute metrics r = wh[:, None] / k[None] x = torch.min(r, 1 / r).min(2)[0] # ratio metric # x = wh_iou(wh, torch.tensor(k)) # iou metric return x, x.max(1)[0] # x, best_x def anchor_fitness(k): # mutation fitness _, best = metric(torch.tensor(k, dtype=torch.float32), wh) return (best * (best > thr).float()).mean() # fitness def print_results(k, verbose=True): k = k[np.argsort(k.prod(1))] # sort small to large x, best = metric(k, wh0) bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \ f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \ f'past_thr={x[x > thr].mean():.3f}-mean: ' for x in k: s += '%i,%i, ' % (round(x[0]), round(x[1])) if verbose: LOGGER.info(s[:-2]) return k if isinstance(dataset, str): # *.yaml file with open(dataset, errors='ignore') as f: data_dict = yaml.safe_load(f) # model dict dataset = BaseDataset(data_dict['train'], augment=True, rect=True) # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh # Filter i = (wh0 < 3.0).any(1).sum() if i: LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size') wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 # Kmeans init try: LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...') assert n <= len(wh) # apply overdetermined constraint s = wh.std(0) # sigmas for whitening k = kmeans(wh / s, n, iter=30)[0] * s # points assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar except Exception: LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init') k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0)) k = print_results(k, verbose=False) # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.savefig('wh.png', dpi=200) # Evolve f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar for _ in pbar: v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) kg = (k.copy() * v).clip(min=2.0) fg = anchor_fitness(kg) if fg > f: f, k = fg, kg.copy() pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' if verbose: print_results(k, verbose) return print_results(k).astype(np.float32)