from pathlib import Path import hydra import torch from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG from ultralytics.yolo.utils import ROOT, ops from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box from ..detect.predict import DetectionPredictor class SegmentationPredictor(DetectionPredictor): def postprocess(self, preds, img, orig_img): masks = [] if len(preds) == 2: # eval p, proto, = preds else: # len(3) train p, proto, _ = preds # TODO: filter by classes p = ops.non_max_suppression(p, self.args.conf_thres, self.args.iou_thres, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nm=32) for i, pred in enumerate(p): shape = orig_img[i].shape if self.webcam else orig_img.shape if not len(pred): continue if self.args.retina_masks: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() masks.append(ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2])) # HWC else: masks.append(ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)) # HWC pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() return (p, masks) def write_results(self, idx, preds, batch): p, im, im0 = batch log_string = "" if len(im.shape) == 3: im = im[None] # expand for batch dim self.seen += 1 if self.webcam: # batch_size >= 1 log_string += f'{idx}: ' frame = self.dataset.count else: frame = getattr(self.dataset, 'frame', 0) self.data_path = p self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') log_string += '%gx%g ' % im.shape[2:] # print string self.annotator = self.get_annotator(im0) preds, masks = preds det = preds[idx] if len(det) == 0: return log_string # Segments mask = masks[idx] if self.args.save_txt: segments = [ ops.scale_segments(im0.shape if self.arg.retina_masks else im.shape[2:], x, im0.shape, normalize=True) for x in reversed(ops.masks2segments(mask))] # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # add to string # Mask plotting self.annotator.masks( mask, colors=[colors(x, True) for x in det[:, 5]], im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() / 255 if self.args.retina_masks else im[idx]) # Write results for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])): if self.args.save_txt: # Write to file seg = segments[j].reshape(-1) # (n,2) to (n*2) line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format with open(f'{self.txt_path}.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if self.save_img or self.args.save_crop or self.args.view_img: c = int(cls) # integer class label = None if self.args.hide_labels else ( self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}') self.annotator.box_label(xyxy, label, color=colors(c, True)) # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3) if self.args.save_crop: imc = im0.copy() save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] / f'{p.stem}.jpg', BGR=True) return log_string @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) def predict(cfg): cfg.model = cfg.model or "n.pt" sz = cfg.img_size if type(sz) != int: # recieved listConfig cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand else: cfg.img_size = [sz, sz] predictor = SegmentationPredictor(cfg) predictor() if __name__ == "__main__": predict()