---
description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch.
keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch
---
## BaseModel
---
### ::: ultralytics.nn.tasks.BaseModel
## DetectionModel
---
### ::: ultralytics.nn.tasks.DetectionModel
## SegmentationModel
---
### ::: ultralytics.nn.tasks.SegmentationModel
## PoseModel
---
### ::: ultralytics.nn.tasks.PoseModel
## ClassificationModel
---
### ::: ultralytics.nn.tasks.ClassificationModel
## RTDETRDetectionModel
---
### ::: ultralytics.nn.tasks.RTDETRDetectionModel
## Ensemble
---
### ::: ultralytics.nn.tasks.Ensemble
## torch_safe_load
---
### ::: ultralytics.nn.tasks.torch_safe_load
## attempt_load_weights
---
### ::: ultralytics.nn.tasks.attempt_load_weights
## attempt_load_one_weight
---
### ::: ultralytics.nn.tasks.attempt_load_one_weight
## parse_model
---
### ::: ultralytics.nn.tasks.parse_model
## yaml_model_load
---
### ::: ultralytics.nn.tasks.yaml_model_load
## guess_model_scale
---
### ::: ultralytics.nn.tasks.guess_model_scale
## guess_model_task
---
### ::: ultralytics.nn.tasks.guess_model_task