# Ultralytics YOLO 🚀, AGPL-3.0 license import math import os import platform import random import time from contextlib import contextmanager from copy import deepcopy from pathlib import Path from typing import Union import numpy as np import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torchvision from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, __version__ from ultralytics.yolo.utils.checks import check_version try: import thop except ImportError: thop = None TORCHVISION_0_10 = check_version(torchvision.__version__, '0.10.0') TORCH_1_9 = check_version(torch.__version__, '1.9.0') TORCH_1_11 = check_version(torch.__version__, '1.11.0') TORCH_1_12 = check_version(torch.__version__, '1.12.0') TORCH_2_0 = check_version(torch.__version__, minimum='2.0') @contextmanager def torch_distributed_zero_first(local_rank: int): """Decorator to make all processes in distributed training wait for each local_master to do something.""" initialized = torch.distributed.is_available() and torch.distributed.is_initialized() if initialized and local_rank not in (-1, 0): dist.barrier(device_ids=[local_rank]) yield if initialized and local_rank == 0: dist.barrier(device_ids=[0]) def smart_inference_mode(): """Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator.""" def decorate(fn): """Applies appropriate torch decorator for inference mode based on torch version.""" return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn) return decorate def select_device(device='', batch=0, newline=False, verbose=True): """Selects PyTorch Device. Options are device = None or 'cpu' or 0 or '0' or '0,1,2,3'.""" s = f'Ultralytics YOLOv{__version__} 🚀 Python-{platform.python_version()} torch-{torch.__version__} ' device = str(device).lower() for remove in 'cuda:', 'none', '(', ')', '[', ']', "'", ' ': device = device.replace(remove, '') # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1' cpu = device == 'cpu' mps = device == 'mps' # Apple Metal Performance Shaders (MPS) if cpu or mps: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False elif device: # non-cpu device requested if device == 'cuda': device = '0' visible = os.environ.get('CUDA_VISIBLE_DEVICES', None) os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', ''))): LOGGER.info(s) install = 'See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no ' \ 'CUDA devices are seen by torch.\n' if torch.cuda.device_count() == 0 else '' raise ValueError(f"Invalid CUDA 'device={device}' requested." f" Use 'device=cpu' or pass valid CUDA device(s) if available," f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n" f'\ntorch.cuda.is_available(): {torch.cuda.is_available()}' f'\ntorch.cuda.device_count(): {torch.cuda.device_count()}' f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n" f'{install}') if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 n = len(devices) # device count if n > 1 and batch > 0 and batch % n != 0: # check batch_size is divisible by device_count raise ValueError(f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or " f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}.") space = ' ' * (len(s) + 1) for i, d in enumerate(devices): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB arg = 'cuda:0' elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available() and TORCH_2_0: # Prefer MPS if available s += 'MPS\n' arg = 'mps' else: # revert to CPU s += 'CPU\n' arg = 'cpu' if verbose and RANK == -1: LOGGER.info(s if newline else s.rstrip()) return torch.device(arg) def time_sync(): """PyTorch-accurate time.""" if torch.cuda.is_available(): torch.cuda.synchronize() return time.time() def fuse_conv_and_bn(conv, bn): """Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/.""" fusedconv = nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, dilation=conv.dilation, groups=conv.groups, bias=True).requires_grad_(False).to(conv.weight.device) # Prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) # Prepare spatial bias b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def fuse_deconv_and_bn(deconv, bn): """Fuse ConvTranspose2d() and BatchNorm2d() layers.""" fuseddconv = nn.ConvTranspose2d(deconv.in_channels, deconv.out_channels, kernel_size=deconv.kernel_size, stride=deconv.stride, padding=deconv.padding, output_padding=deconv.output_padding, dilation=deconv.dilation, groups=deconv.groups, bias=True).requires_grad_(False).to(deconv.weight.device) # Prepare filters w_deconv = deconv.weight.clone().view(deconv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape)) # Prepare spatial bias b_conv = torch.zeros(deconv.weight.size(1), device=deconv.weight.device) if deconv.bias is None else deconv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fuseddconv def model_info(model, detailed=False, verbose=True, imgsz=640): """Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320].""" if not verbose: return n_p = get_num_params(model) # number of parameters n_g = get_num_gradients(model) # number of gradients n_l = len(list(model.modules())) # number of layers if detailed: LOGGER.info( f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') LOGGER.info('%5g %40s %9s %12g %20s %10.3g %10.3g %10s' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype)) flops = get_flops(model, imgsz) fused = ' (fused)' if getattr(model, 'is_fused', lambda: False)() else '' fs = f', {flops:.1f} GFLOPs' if flops else '' yaml_file = getattr(model, 'yaml_file', '') or getattr(model, 'yaml', {}).get('yaml_file', '') model_name = Path(yaml_file).stem.replace('yolo', 'YOLO') or 'Model' LOGGER.info(f'{model_name} summary{fused}: {n_l} layers, {n_p} parameters, {n_g} gradients{fs}') return n_l, n_p, n_g, flops def get_num_params(model): """Return the total number of parameters in a YOLO model.""" return sum(x.numel() for x in model.parameters()) def get_num_gradients(model): """Return the total number of parameters with gradients in a YOLO model.""" return sum(x.numel() for x in model.parameters() if x.requires_grad) def model_info_for_loggers(trainer): """ Return model info dict with useful model information. Example for YOLOv8n: {'model/parameters': 3151904, 'model/GFLOPs': 8.746, 'model/speed_ONNX(ms)': 41.244, 'model/speed_TensorRT(ms)': 3.211, 'model/speed_PyTorch(ms)': 18.755} """ if trainer.args.profile: # profile ONNX and TensorRT times from ultralytics.yolo.utils.benchmarks import ProfileModels results = ProfileModels([trainer.last], device=trainer.device).profile()[0] results.pop('model/name') else: # only return PyTorch times from most recent validation results = { 'model/parameters': get_num_params(trainer.model), 'model/GFLOPs': round(get_flops(trainer.model), 3)} results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3) return results def get_flops(model, imgsz=640): """Return a YOLO model's FLOPs.""" try: model = de_parallel(model) p = next(model.parameters()) stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0 # stride GFLOPs imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float return flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs except Exception: return 0 def get_flops_with_torch_profiler(model, imgsz=640): """Compute model FLOPs (thop alternative).""" model = de_parallel(model) p = next(model.parameters()) stride = (max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32) * 2 # max stride im = torch.zeros((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format with torch.profiler.profile(with_flops=True) as prof: model(im) flops = sum(x.flops for x in prof.key_averages()) / 1E9 imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs return flops def initialize_weights(model): """Initialize model weights to random values.""" for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: m.inplace = True def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) # Scales img(bs,3,y,x) by ratio constrained to gs-multiple if ratio == 1.0: return img h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize if not same_shape: # pad/crop img h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def make_divisible(x, divisor): """Returns nearest x divisible by divisor.""" if isinstance(divisor, torch.Tensor): divisor = int(divisor.max()) # to int return math.ceil(x / divisor) * divisor def copy_attr(a, b, include=(), exclude=()): """Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes.""" for k, v in b.__dict__.items(): if (len(include) and k not in include) or k.startswith('_') or k in exclude: continue else: setattr(a, k, v) def get_latest_opset(): """Return second-most (for maturity) recently supported ONNX opset by this version of torch.""" return max(int(k[14:]) for k in vars(torch.onnx) if 'symbolic_opset' in k) - 1 # opset def intersect_dicts(da, db, exclude=()): """Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.""" return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape} def is_parallel(model): """Returns True if model is of type DP or DDP.""" return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)) def de_parallel(model): """De-parallelize a model: returns single-GPU model if model is of type DP or DDP.""" return model.module if is_parallel(model) else model def one_cycle(y1=0.0, y2=1.0, steps=100): """Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.""" return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 def init_seeds(seed=0, deterministic=False): """Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html.""" random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe # torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287 if deterministic: if TORCH_2_0: torch.use_deterministic_algorithms(True, warn_only=True) # warn if deterministic is not possible torch.backends.cudnn.deterministic = True os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' os.environ['PYTHONHASHSEED'] = str(seed) else: LOGGER.warning('WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.') else: torch.use_deterministic_algorithms(False) torch.backends.cudnn.deterministic = False class ModelEMA: """Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models Keeps a moving average of everything in the model state_dict (parameters and buffers) For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage To disable EMA set the `enabled` attribute to `False`. """ def __init__(self, model, decay=0.9999, tau=2000, updates=0): """Create EMA.""" self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA self.updates = updates # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) for p in self.ema.parameters(): p.requires_grad_(False) self.enabled = True def update(self, model): """Update EMA parameters.""" if self.enabled: self.updates += 1 d = self.decay(self.updates) msd = de_parallel(model).state_dict() # model state_dict for k, v in self.ema.state_dict().items(): if v.dtype.is_floating_point: # true for FP16 and FP32 v *= d v += (1 - d) * msd[k].detach() # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}' def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): """Updates attributes and saves stripped model with optimizer removed.""" if self.enabled: copy_attr(self.ema, model, include, exclude) def strip_optimizer(f: Union[str, Path] = 'best.pt', s: str = '') -> None: """ Strip optimizer from 'f' to finalize training, optionally save as 's'. Args: f (str): file path to model to strip the optimizer from. Default is 'best.pt'. s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten. Returns: None Usage: from pathlib import Path from ultralytics.yolo.utils.torch_utils import strip_optimizer for f in Path('/Users/glennjocher/Downloads/weights').rglob('*.pt'): strip_optimizer(f) """ # Use dill (if exists) to serialize the lambda functions where pickle does not do this try: import dill as pickle except ImportError: import pickle x = torch.load(f, map_location=torch.device('cpu')) args = {**DEFAULT_CFG_DICT, **x['train_args']} if 'train_args' in x else None # combine args if x.get('ema'): x['model'] = x['ema'] # replace model with ema for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys x[k] = None x['epoch'] = -1 x['model'].half() # to FP16 for p in x['model'].parameters(): p.requires_grad = False x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys # x['model'].args = x['train_args'] torch.save(x, s or f, pickle_module=pickle) mb = os.path.getsize(s or f) / 1E6 # filesize LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") def profile(input, ops, n=10, device=None): """ YOLOv8 speed/memory/FLOPs profiler Usage: input = torch.randn(16, 3, 640, 640) m1 = lambda x: x * torch.sigmoid(x) m2 = nn.SiLU() profile(input, [m1, m2], n=100) # profile over 100 iterations """ results = [] if not isinstance(device, torch.device): device = select_device(device) LOGGER.info(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" f"{'input':>24s}{'output':>24s}") for x in input if isinstance(input, list) else [input]: x = x.to(device) x.requires_grad = True for m in ops if isinstance(ops, list) else [ops]: m = m.to(device) if hasattr(m, 'to') else m # device m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward try: flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1E9 * 2 if thop else 0 # GFLOPs except Exception: flops = 0 try: for _ in range(n): t[0] = time_sync() y = m(x) t[1] = time_sync() try: _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() t[2] = time_sync() except Exception: # no backward method # print(e) # for debug t[2] = float('nan') tf += (t[1] - t[0]) * 1000 / n # ms per op forward tb += (t[2] - t[1]) * 1000 / n # ms per op backward mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters LOGGER.info(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') results.append([p, flops, mem, tf, tb, s_in, s_out]) except Exception as e: LOGGER.info(e) results.append(None) torch.cuda.empty_cache() return results class EarlyStopping: """ Early stopping class that stops training when a specified number of epochs have passed without improvement. """ def __init__(self, patience=50): """ Initialize early stopping object Args: patience (int, optional): Number of epochs to wait after fitness stops improving before stopping. """ self.best_fitness = 0.0 # i.e. mAP self.best_epoch = 0 self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop self.possible_stop = False # possible stop may occur next epoch def __call__(self, epoch, fitness): """ Check whether to stop training Args: epoch (int): Current epoch of training fitness (float): Fitness value of current epoch Returns: (bool): True if training should stop, False otherwise """ if fitness is None: # check if fitness=None (happens when val=False) return False if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training self.best_epoch = epoch self.best_fitness = fitness delta = epoch - self.best_epoch # epochs without improvement self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch stop = delta >= self.patience # stop training if patience exceeded if stop: LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' f'i.e. `patience=300` or use `patience=0` to disable EarlyStopping.') return stop