# Ultralytics YOLO 🚀, AGPL-3.0 license # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from functools import partial import torch from ...yolo.utils.downloads import attempt_download_asset from .modules.decoders import MaskDecoder from .modules.encoders import ImageEncoderViT, PromptEncoder from .modules.sam import Sam from .modules.tiny_encoder import TinyViT from .modules.transformer import TwoWayTransformer def build_sam_vit_h(checkpoint=None): """Build and return a Segment Anything Model (SAM) h-size model.""" return _build_sam( encoder_embed_dim=1280, encoder_depth=32, encoder_num_heads=16, encoder_global_attn_indexes=[7, 15, 23, 31], checkpoint=checkpoint, ) def build_sam_vit_l(checkpoint=None): """Build and return a Segment Anything Model (SAM) l-size model.""" return _build_sam( encoder_embed_dim=1024, encoder_depth=24, encoder_num_heads=16, encoder_global_attn_indexes=[5, 11, 17, 23], checkpoint=checkpoint, ) def build_sam_vit_b(checkpoint=None): """Build and return a Segment Anything Model (SAM) b-size model.""" return _build_sam( encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], checkpoint=checkpoint, ) def build_mobile_sam(checkpoint=None): """Build and return Mobile Segment Anything Model (Mobile-SAM).""" return _build_sam( encoder_embed_dim=[64, 128, 160, 320], encoder_depth=[2, 2, 6, 2], encoder_num_heads=[2, 4, 5, 10], encoder_global_attn_indexes=None, mobile_sam=True, checkpoint=checkpoint, ) def _build_sam(encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, checkpoint=None, mobile_sam=False): """Builds the selected SAM model architecture.""" prompt_embed_dim = 256 image_size = 1024 vit_patch_size = 16 image_embedding_size = image_size // vit_patch_size image_encoder = (TinyViT( img_size=1024, in_chans=3, num_classes=1000, embed_dims=encoder_embed_dim, depths=encoder_depth, num_heads=encoder_num_heads, window_sizes=[7, 7, 14, 7], mlp_ratio=4.0, drop_rate=0.0, drop_path_rate=0.0, use_checkpoint=False, mbconv_expand_ratio=4.0, local_conv_size=3, layer_lr_decay=0.8, ) if mobile_sam else ImageEncoderViT( depth=encoder_depth, embed_dim=encoder_embed_dim, img_size=image_size, mlp_ratio=4, norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), num_heads=encoder_num_heads, patch_size=vit_patch_size, qkv_bias=True, use_rel_pos=True, global_attn_indexes=encoder_global_attn_indexes, window_size=14, out_chans=prompt_embed_dim, )) sam = Sam( image_encoder=image_encoder, prompt_encoder=PromptEncoder( embed_dim=prompt_embed_dim, image_embedding_size=(image_embedding_size, image_embedding_size), input_image_size=(image_size, image_size), mask_in_chans=16, ), mask_decoder=MaskDecoder( num_multimask_outputs=3, transformer=TwoWayTransformer( depth=2, embedding_dim=prompt_embed_dim, mlp_dim=2048, num_heads=8, ), transformer_dim=prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, ), pixel_mean=[123.675, 116.28, 103.53], pixel_std=[58.395, 57.12, 57.375], ) if checkpoint is not None: checkpoint = attempt_download_asset(checkpoint) with open(checkpoint, 'rb') as f: state_dict = torch.load(f) sam.load_state_dict(state_dict) sam.eval() # sam.load_state_dict(torch.load(checkpoint), strict=True) # sam.eval() return sam sam_model_map = { 'sam_h.pt': build_sam_vit_h, 'sam_l.pt': build_sam_vit_l, 'sam_b.pt': build_sam_vit_b, 'mobile_sam.pt': build_mobile_sam, } def build_sam(ckpt='sam_b.pt'): """Build a SAM model specified by ckpt.""" model_builder = None for k in sam_model_map.keys(): if ckpt.endswith(k): model_builder = sam_model_map.get(k) if not model_builder: raise FileNotFoundError(f'{ckpt} is not a supported sam model. Available models are: \n {sam_model_map.keys()}') return model_builder(ckpt)